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INTENDED FOR CLASS USE OR SELF-STUDY, this text aspires to introduce sta-
tistical methodology to a wide audience, simply and intuitively, through
resampling from the data at hand.

The resampling methods—permutations and the bootstrap—are easy to
learn and easy to apply. They require no mathematics beyond introductory
high-school algebra, yet are applicable in an exceptionally broad range of
subject areas.

Introduced in the 1930s, the numerous, albeit straightforward calcula-
tions resampling methods require were beyond the capabilities of the
primitive calculators then in use. They were soon displaced by less power-
ful, less accurate approximations that made use of tables. Today, with a
powerful computer on every desktop, resampling methods have resumed
their dominant role and table lookup is an anachronism.

Physicians and physicians in training, nurses and nursing students, busi-
ness persons, business majors, research workers, and students in the bio-
logical and social sciences will find here a practical and easily grasped
guide to descriptive statistics, estimation, testing hypotheses, and model
building.

For advanced students in biology, dentistry, medicine, psychology, soci-
ology, and public health, this text can provide a first course in statistics
and quantitative reasoning.

For mathematics majors, this text will form the first course in statistics,
to be followed by a second course devoted to distribution theory and
asymptotic results.

Hopefully, all readers will find my objectives are the same as theirs: To
use quantitative methods to characterize, review, report on, test, estimate, and
classify findings.

Warning to the autodidact: You can master the material in this text
without the aid of an instructor. But you may not be able to grasp even
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the more elementary concepts without completing the exercises. Whenever
and wherever you encounter an exercise in the text, stop your reading and
complete the exercise before going further.

You’ll need to download and install several add-ins for Excel to do the
exercises, including BoxSampler, Ctree, DDXL, Resampling Statistics for
Excel, and XLStat. All are available in no-charge trial versions. Complete
instructions for doing the installations are provided in Chapter 1. For
those brand new to Excel itself, a primer is included as an Appendix to the
text.

For a one-quarter short course, I’d recommend taking students through
Chapters 1 and 2 and part of Chapter 3. Chapters 3 and 4 would be com-
pleted in the winter quarter along with the start of chapter 5, finishing the
year with Chapters 5, 6, and 7. Chapters 8 and 9 on “Reporting Your
Findings” and “Problem Solving” convert the text into an invaluable pro-
fessional resource.

An Instructor’s Manual is available to qualified instructors and may be
obtained by contacting the Publisher. Please visit
ftp://ftp.wiley.com/public/sci_tech_med/introduction_
statistics/ for instructions on how to request a copy of the manual.

Twenty-eight or more exercises included in each chapter plus dozens of
thought-provoking questions in Chapter 9 will serve the needs of both
classroom and self-study. The discovery method is utilized as often as pos-
sible, and the student and conscientious reader are forced to think their
way to a solution rather than being able to copy the answer or apply a
formula straight out of the text. To reduce the scutwork to a minimum,
the data sets for the exercises may be downloaded from
ftp://ftp.wiley.com/public/sci_tech_med/statistics_
resampling.

If you find this text an easy read, then your gratitude should go to Cliff
Lunneborg for his many corrections and clarifications. I am deeply
indebted to the students in the Introductory Statistics and Resampling
Methods courses that I offer on-line each quarter through the auspices of
statistics.com for their comments and corrections.

Phillip I. Good
Huntington Beach, CA
frere_until@hotmail.com

xii PREFACE



If there were no variation, if every observation were predictable, a
mere repetition of what had gone before, there would be no need for
statistics.

1.1. VARIATION
We find physics extremely satisfying. In high school, we learned the
formula S = VT, which in symbols relates the distance traveled by an
object to its velocity multiplied by the time spent in traveling. If the
speedometer says 60 miles an hour, then in half an hour you are certain to
travel exactly 30 miles. Except that during our morning commute, the
speed we travel is seldom constant.

In college, we had Boyle’s law, V = KT/P, with its tidy relationship
between the volume V, temperature T, and pressure P of a perfect gas.
This is just one example of the perfection encountered there. The problem
was we could never quite duplicate this (or any other) law in the freshman
physics laboratory. Maybe it was the measuring instruments, our lack of
familiarity with the equipment, or simple measurement error, but we kept
getting different values for the constant K.

By now, we know that variation is the norm. Instead of getting a fixed,
reproducible V to correspond to a specific T and P, one ends up with a
distribution of values instead as a result of errors in measurement. But we
also know that with a large enough sample, the mean and shape of this
distribution are reproducible.

That’s the good news: Make astronomical, physical, or chemical 
measurements and the only variation appears to be due to observational
error. But try working with people.

Anyone who has spent any time in a schoolroom, whether as a parent or
as a child, has become aware of the vast differences among individuals.

Chapter 1

Variation (or What
Statistics Is All About)

Introduction to Statistics Through Resampling Methods & Microsoft Office Excel®, by Phillip I. Good
Copyright © 2005 John Wiley & Sons, Inc.



Our most distinct memories are of how large the girls were in the third
grade (ever been beat up by a girl?) and the trepidation we felt on the
playground whenever teams were chosen (not right field again!). Much
later, in our college days, we were to discover there were many individuals
capable of devouring larger quantities of alcohol than we could without
noticeable effect, and a few, mostly of other nationalities, whom we could
drink under the table.

Whether or not you imbibe, we’re sure you’ve had the opportunity to
observe the effects of alcohol on others. Some individuals take a single
drink and their nose turns red. Others can’t seem to take just one drink.

The majority of effort in experimental design, the focus of Chapter 5 of
this text, is devoted to finding ways in which this variation from individual
to individual won’t swamp or mask the variation that results from differ-
ences in treatment or approach. It’s probably safe to say that what distin-
guishes statistics from all other branches of applied mathematics is that it
is devoted to characterizing and then accounting for variation.
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SOURCES OF VARIATION

You catch three fish. You heft each one and estimate its weight; you weigh
each one on a pan scale when you get back to dock, and you take them to
a chemistry laboratory and weigh them there. Your two friends on the boat
do exactly the same thing. (All but Mike; the chem professor catches him
and calls campus security. This is known as missing data.)

The 26 weights you’ve recorded (3 ¥ 3 ¥ 3 - 1 when they nabbed Mike)
differ as result of measurement error, observer error, differences among
observers, differences among measuring devices, and differences among
fish.

1.2. COLLECTING DATA
The best way to observe variation is for you, the reader, to collect some
data. But before we make some suggestions, a few words of caution are in
order: 80% of the effort in any study goes into data collection and prepa-
ration for data collection. Any effort you don’t expend goes into cleaning
up the resulting mess.

We constantly receive letters and E-mails asking which statistic we
would use to rescue a misdirected study. There is no magic formula, no
secret procedure known only to PhD statisticians. The operative phrase is
GIGO: Garbage In, Garbage Out. So think carefully before you embark
on your collection effort. Make a list of possible sources of variation and
see whether you can eliminate any that are unrelated to the objectives of



your study. If midway through, you think of a better method—don’t use
it. Any inconsistency in your procedure will only add to the undesired
variation.

Let’s get started. Here are three suggestions. Before continuing with
your reading, follow through on at least one of them or an equivalent idea
of your own, as we will be using the data you collect in the very next
section:

1. Measure the height, circumference, and weight of a dozen humans (or
dogs, or hamsters, or frogs, or crickets).

2. Time some tasks. Record the times of 5–10 individuals over three track
lengths (say 50 meters, 100 meters, and a quarter mile). Because the
participants (or trial subjects) are sure to complain they could have
done much better if only given the opportunity, record at least two
times for each study subject. (Feel free to use frogs, hamsters, or turtles
in place of humans as runners to be timed. Or to replace foot races
with knot tying, bandaging, or putting on or taking off a uniform.)

3. Take a survey. Include at least three questions and survey at least 10
subjects. All your questions should take the form “Do you prefer A to
B? Strongly prefer A, slightly prefer A, indifferent, slightly prefer B,
strongly prefer B.” For example, “Do you prefer Britney Spears to 
Jennifer Lopez?” or “Would you prefer spending money on new class-
rooms rather than guns?”

CHAPTER 1 VARIATION (OR WHAT STATISTICS IS ALL ABOUT) 3

SOURCES OF VARIATION

• Characteristics of the observer(s)

• Characteristics of the environment in which observations are made

• Characteristics of the measuring device(s)

• Characteristics of the subjects or objects observed

Exercise 1.1. Collect data as described above. Before you begin, write down
a complete description of exactly what you intend to measure and how you
plan to make your measurements. Make a list of all potential sources of 
variation. When your study is complete, describe what deviations you 
had to make from your plan and what additional sources of variation you
encountered.

1.3. SUMMARIZING YOUR DATA
Learning how to adequately summarize one’s data can be a major chal-
lenge. Can it be explained with a single number like the median? The



median is the middle value of the observations you have taken, so that
half of the data have a smaller value and half have a greater value. Take
the observations 1.2, 2.3, 4.0, 3, and 5.1. The observation 3 is the one in
the middle. If we have an even number of observations such as 1.2, 2.3,
3, 3.8, 4.0, and 5.1, then the best one can say is that the median or mid-
point is a number (any number) between 3 and 3.8. Now, a question for
you: What are the median values of the measurements you made?

Hopefully, you’ve already collected data as described in Section 1.2;
otherwise, face it, you are behind. Get out the tape measure and the
scales. If you conducted time trials, use those data instead. Treat the
observations for each of the three distances separately.

If you conducted a survey, we have a bit of a problem. How does one
translate “I would prefer spending money on new classrooms rather than
guns” into a number a computer can add and subtract? There is more one
way to do this, as we’ll discuss in what follows under the heading, “Types
of Data.” For the moment, assign the number 1 to “Strongly prefer class-
rooms,” the number 2 to “Slightly prefer classrooms,” and so on.

1.3.1. Learning to Use Excel
Calculating the value of a statistic is easy enough when we’ve only 1 or 2
observations, but a major pain when we have 10 or more. And as for
drawing graphs—one of the best ways to summarize your data—we’re no
artists. Let the computer do the work.

We’re going to need the help of Excel, a spreadsheet program with
many built-in statistics and graphics functions. We’ll assume that you
already have Microsoft Office Excel installed and have some familiarity
with its use.1 To enter the observations 1.2, 2.3, 4.0, 3, and 5.1, simply
type these values down the first column starting in the third row. Notice
in Fig. 1.1 that we’ve put a description of the column in the second row.
The first row is reserved for a more lengthy description of the project
should one be required.

In Fig. 1.1, we’ve begun in Row 8 to start the computation of the
median of our data. Here are the steps we went through:

1. Type the first data element (1.2 in this example) in the third row of
the first column.

2. Press the “Enter” key to go to the next row.

4 STATISTICS THROUGH RESAMPLING METHODS AND MICROSOFT OFFICE EXCEL®

1 If you’re an absolute beginner, we’ve included an Appendix to the text to help you get
started. If you already own and are familiar with some other statistics package or spreadsheet,
feel free to use it instead. The objective of this text is to help you understand and make use
of basic statistics principles. Excel is merely a convenient tool.



3. Repeat steps 1 and 2 until all the data are entered.

4. Use your mouse to depress the = button in the row.

5. Depress the down arrow next to the word SUM and select “More
Functions” from the resultant display (Fig. 1.2).

6. Select “Statistical” from the Function category menu and “Median”
from the Function name menu.

7. Press “OK” or the “Enter” key to learn that the median of the five
numbers we entered is 2.65.

The median of a sample tells us where the center of a set of observa-
tions is, but it provides no information about the variability of our obser-
vations, and variation is what statistics is all about. Pictures tell the story
the best.

In Section 1.4, we’ll consider some data on heights I collected while
teaching sixth-graders mathematics. The one-way strip chart or dotplot
(Fig. 1.3) created with the aid of Data Desk/XL2, an Excel add-in, reveals
that the minimum of this particular set of data is approximately 137cm

CHAPTER 1 VARIATION (OR WHAT STATISTICS IS ALL ABOUT) 5

FIGURE 1.1 Using Excel to compute the median of a data set.

2 A trial version may be downloaded from http://www.datadesk.com/products/
data_analysis/ddxl/.
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FIGURE 1.2 A partial list of the functions available in Excel.

FIGURE 1.3 One-way strip chart or dotplot.

and the maximum approximtely 167cm. Each dot in this strip chart corre-
sponds to an observation. Blotches correspond to multiple observations.
The range over which these observations extend is 167–137, or 30.

By the way, DataDesk/XL is just one of a hundred or more programs
that can add in capabilities to Excel. We’ll be using several such add-ins to
carry out the necessary calculations to complete this course.



A weakness of Fig. 1.3 is that it’s hard to tell exactly what the values of
the various percentiles are. A glance at the box and whiskers plot (Fig. 1.4)
created with the aid of XlStat (Addinsoft, 2004),3 a second Excel add-in,
tells us that the median of the classroom data described in Section 1.4 is
153.5cm, the mean is 151.6cm, and the interquartile range (the “box”) is
close to 14cm. The minimum and maximum of the sample are located at
the ends of the “whiskers.”

In Section 1.4, you’ll learn how to create these and other graphs.

1.4. REPORTING YOUR RESULTS: 
THE CLASSROOM DATA
Imagine you are in the sixth grade and you have just completed measuring
the heights of all your classmates.

Once the pandemonium has subsided, your instructor asks you and your
team to prepare a report summarizing your results.

Actually, you have two sets of results. The first set consists of the mea-
surements you made of you and your team members, reported in centime-
ters, 148.5, 150.0, and 153.0. (Kelly is the shortest, incidentally, and you
are the tallest.) The instructor asks you to report the minimum, the

CHAPTER 1 VARIATION (OR WHAT STATISTICS IS ALL ABOUT) 7

Box plot - Heights of Sixth Graders

153.500151.568

130 150 170

Height in Centimeters

FIGURE 1.4 Box and whiskers plot of classroom data.

3 A trial version may be downloaded from http://www.xlstat.com/download.htm.



median, and the maximum height in your group. This part is easy, or at
least it’s easy once you look the terms up in the glossary of your textbook
and discover that minimum means smallest, maximum means largest, and
median is the one in the middle. Conscientiously, you write these defini-
tions down—they could be on a test.

In your group, the minimum height is 148.5 centimeters, the median is
150.0 centimeters, and the maximum is 153.0 centimeters.

Your second assignment is more challenging. The results from all your
classmates have been written on the blackboard—all 22 of them.

141, 156.5, 162, 159, 157, 143.5, 154, 158, 140, 142, 150, 148.5,
138.5, 161, 153, 145, 147, 158.5, 160.5, 167.5, 155, 137

You copy the figures neatly into the first column of an Excel worksheet as
described in the previous section. Next, you brainstorm with your team-
mates. Nothing. Then John speaks up—he’s always interrupting in class.
Shouldn’t we put the heights in order from smallest to largest? “Of
course,” says the teacher, “you should always begin by ordering your
observations.”

You go to the Excel menu bar as shown in Fig. 1.5 and access the
“sort” command from the “data” menu. As a result, your data are now in
sorted in order from smallest to largest:

8 STATISTICS THROUGH RESAMPLING METHODS AND MICROSOFT OFFICE EXCEL®

FIGURE 1.5 Accessing the sort command.



137.0 138.5 140.0 141.0 142.0 143.5 145.0 147.0 148.5 150.0 153.0
154.0 155.0 156.5 157.0 158.0 158.5 159.0 160.5 161.0 162.0 167.5

“I know what the minimum is,” you say—come to think of it, you are
always blurting out in class, too, “137 millimeters, that’s Tony.”

“The maximum, 167.5, that’s Pedro, he’s tall,” hollers someone from
the back of the room.

As for the median height, the one in the middle is just 153 centimeters
(or is it 154)? What does Excel tell us? As illustrated in Fig. 1.6, we need
to do the following to find out:

1. Put our cursor in the first empty cell after the data; A25 in our
example.

2. Click the = key on the formula menu bar.

3. Select “median” by using the down arrow � on the formula bar.

CHAPTER 1 VARIATION (OR WHAT STATISTICS IS ALL ABOUT) 9

FIGURE 1.6 Computing the median of the classroom data.



4. Use the cursor to select the data range or enter the data range using
the form shown in Fig. 1.6 as A3:A24.

5. Press OK.

The result 153.5 will appear in cell A25.
Actually, the median could be any number between 153 and 154, but it

is a custom among statisticians, honored by Excel, to report the median as
the value midway between the two middle values, when the number of
observations is even.

1.4.1. Picturing Data
The preceding scenario was a real one. The results reported here, espe-
cially the pandemonium, were obtained by my sixth grade homeroom at
St. John’s Episcopal School in Rancho Santa Marguarite, CA. The
problem of a metric tape measure was solved by building their own from
string and a meter stick.

My students at St. John’s weren’t through with their assignments. It
was important for them to build on and review what they’d learned in the
fifth grade, so I had them draw pictures of their data. Not only is drawing
a picture fun, but pictures and graphs are an essential first step toward 
recognizing patterns.

We begin by downloading a trial copy of DataDesk/XL from the
website http://www.datadesk.com/products/data_analysis/
downloads/ddxl.cfm. Note the folder to which you downloaded the
program.

To install this add-in, pull down the Excel Tools menu, select “add-ins,”
and then browse the various folders on the hard disk until you locate the
DDXL add-in. Once DDXL is added, a new pull-down menu, labeled
DDXL will appear on the menu bar as shown in Fig. 1.7.

After selecting “Charts and Plots” as depicted in Fig. 1.7, we complete
the Charts and Plots Dialog shown in Fig. 1.8. Note that among the other
possible headings under “Function type” are Box Plot and Histogram.

We click “OK”, and Fig. 1.9 reveals the end result. As a by-product, the
numeric values of various sample statistics are displayed as well as the
dotplot.

Exercise 1.2. Generate a dot plot and a box plot for one of the data sets
you gathered in your initial assignment. Write down the values of the median,
minimum, and maximum that you can infer from the box plot.

1.4.2. Displaying Multiple Variables
I’d read, but didn’t quite believe, that one’s arm span is almost exactly the
same as one’s height. To test this hypothesis, I had my sixth graders get
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FIGURE 1.7 Selecting charts and plots from the DDXL menu.

FIGURE 1.8 Selecting the type of graph desired.



out their tape measures a second time and rule off the distance from the
fingertips of the left hand to the fingertips of the right while the student
they were measuring stood with arms outstretched like a big bird. After
the assistant principal had come and gone (something about how the class
was a little noisy, and though we were obviously having a good time,
could we just be a little quieter), they recorded their results in the form of
a two-dimensional scatter plot.

They had to reenter their height data (it had been sorted, remember)
and then enter their arm span data :

Height = 141, 156.5, 162, 159, 157, 143.5, 154, 158, 140, 142, 150,
148.5, 138.5, 161, 153, 145, 147, 158.5, 160.5, 167.5, 155,
137

Arm span = 141, 156.5, 162, 159, 158, 143.5, 155.5, 160, 140, 142.5,
148, 148.5, 139, 160, 152.5, 142, 146.5, 159.5, 160.5, 
164, 157, 137.5

This is trickier than it looks, because unless the data are entered in exactly
the same order by student in each data set, the results are meaningless.
(We told you that 90% of the problems are in collecting the data and
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FIGURE 1.9 Dotplot of the classroom height data.



entering it in the computer for analysis. In another text of mine, 
A Manager’s Guide to The Design and Conduct of Clinical Trials, I recom-
mend eliminating paper forms completely and entering all data directly
into the computer.) Once the two data sets have been read in, creating a
scatterplot is easy.

Well, almost easy. The first chart, Fig. 1.10, I created with the Excel
Chart menu, next to the question mark, selecting XY(Scatter) and repeat-
edly pressing Next.

To create Fig. 1.11 from the first scatterplot, I had to complete several
steps. Placing my cursor on the chart, and depressing the right mouse
button, yielded the menu shown in Fig. 1.12. Clicking on chart options
allowed me to enter a title, “Sixth Grade Data” and labels for the X and
Y axis, “Height” and “Arm Span.”

Escaping from this menu, I put my cursor on the X-axis and clicked to
bring up the menu shown in Fig. 1.13. I changed only one item, setting
the Minor tick mark type to “outside.” Then I clicked on the “Scale” tab,
removed all the check marks under “Auto,” and put in the values I
wanted as shown in Fig. 1.14. I clicked OK to obtain Fig. 1.11.

Exercise 1.3. Is performance on the LSAT used for law school admission
related to one’s grade point average? Prepare a scatterplot of the following
data drawn from a population of 82 law schools. We’ll look at this data again
later in this chapter as well as in Chapters 3 and 4.

CHAPTER 1 VARIATION (OR WHAT STATISTICS IS ALL ABOUT) 13

Arm Span

135
140
145
150
155
160
165
170

0 50 100 150 200

Arm Span

FIGURE 1.10 Scatterplot using excel’s default settings.



14 STATISTICS THROUGH RESAMPLING METHODS AND MICROSOFT OFFICE EXCEL®

Sixth Grade Data

130

140

150

160

170

130 140 150 160 170

Height

A
rm

 S
p

an

FIGURE 1.11 Scatterplot using excel’s full capabilities.
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LSAT = 576, 635, 558, 578, 666, 580, 555, 661, 651, 605, 653,
575, 545, 572, 594

GPA = 3.39, 3.3, 2.81, 3.03, 3.44, 3.07, 3, 3.43, 3.36, 3.13, 3.12,
2.74, 2.76, 2.88, 2.96

1.4.3. Percentiles of the Distribution
The values one reads from a box plot like Fig. 1.4 are approximations. To
obtain exact values for the minimum and maximum, you can sort the data
as shown in Fig. 1.5. To obtain the values of the median and other per-
centiles, we would go to Excel’s formula bar , choose “Statistical” as our
Function category if we have not already done so, and then select 
“Percentile.” The result will be a display similar to Fig. 1.15.

One word of caution: Excel (like most statistics software) yields an
excessive number of digits. Because we only measured heights to the
nearest centimeter, reporting the 25th percentile as 143.875 would
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FIGURE 1.13 Format axis menu.



suggest far more precision in our measurements than actually exists.
Report the value 144 centimeters instead.
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FIGURE 1.14 Setting up the X-axis for Fig. 1.11.

PERCENTILES

The 25th percentile of a sample is such that 25% of the observations are
smaller in value and 75% are greater. The median or 50th percentile of a
sample is such that 50% of the observations are smaller in value and 50%
are greater, and so forth. The socially conscious are concerned as much
with what the 10th percentile of a population is earning as with what the
median income is.

Still another way to display your data is via the cumulative distribution
function. Begin by sorting the data and then typing the numbers 1, 2, and
3 in Column B opposite the data values as shown in Fig. 1.16. Place your
cursor in the first entry in this column (the “1” in B3), hold down your



mouse button, and pull the cursor straight down the column, until the
numbers 1, 2, and 3 are all highlighted. Release the mouse button. Move
your cursor to the lower right corner of B5, until a plus sign appears.
Holding down the mouse button, again pull straight down Column B and
watch as Excel fills in the numbers 4, 5, . . . , up to 22 (the number of
observations) automatically as you pull.

Enter = B3/22 in cell C3, then copy the entry in C3 all the way down
the column to C24. The result should look like Fig. 1.17. Note that the
entries in Column C are the cumulative frequencies of the observations,
that is, 0.045 are 137 or less, 0.09 are 138.5 or less, and so forth.
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FIGURE 1.15 Computing the percentiles of a sample.

FIGURE 1.16 The sorted data.



The next step in preparing a graph of these cumulative frequencies is to
insert an extra row and a column label as shown in Fig. 1.18.

Afterward, highlight the entire region between A2 and C25, select
“Charts and Plots” from the DDXL menu, and complete the resultings
Charts and Plots Dialog as shown in Fig. 1.19 to obtain the plot of Fig.
1.20.

Note that the X-axis of the cumulative distribution function extends
from the minimum to the maximum value of the class data. The Y-axis
corresponding to the cumulative frequency reveals that the probability that
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FIGURE 1.17 Cumulative frequencies.

FIGURE 1.18 Preparing to graph the cumulative frequencies.
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FIGURE 1.19 Plotting the empirical cumulative distribution function.

FIGURE 1.20 Cumulative distribution of heights of Dr. Good’s sixth-
grade class.



a data value is less than the minimum is 0 (you knew that) and the proba-
bility that a data value is less than or equal to the maximum is 1. Using a
ruler, see what X value or values correspond to 0.5 on the Y-scale.

Exercise 1.4. What do we call this value(s)?

Exercise 1.5. Construct cumulative distribution functions for the data
you’ve collected.

1.5. TYPES OF DATA
Statistics such as the minimum, maximum, median, and percentiles make
sense only if the data is ordinal, that is, if it can be ordered from smallest
to largest. Clearly height, weight, number of voters, and blood pressure
are ordinal. So are the answers to survey questions such as “How do you
feel about President Bush?”

Ordinal data can be subdivided into metric and nonmetric data. Metric
data like heights and weights can be added and subtracted. We can
compute the mean as well as the median of metric data. (We can further
subdivide metric data into observations like time that can be measured on
a continuous scale and counts such as “buses per hour” that are discrete.)

But what is the average of “He’s destroying our country” and “He’s no
worse than any other politician”? Such preference data is ordinal, in that it
may be ordered, but it is not metric.

Many times, in order to analyze ordinal data, statisticians will impose a
metric on it—assigning, for example, weight 1 to “Bush is destroying our
country” and weight 5 to “Bush is no worse than any other politician.”
Such analyses are suspect, for another observer using a different set of
weights might get quite a different answer.

The answers to other survey questions are not so readily ordered. For
example, “What is your favorite color?” Oops, bad example, because we
can associate a metric wavelength with each color. Consider instead the
answers to “What is your favorite breed of dog?” or “What country do
your grandparents come from?” The answers to these questions fall into
nonordered categories. Pie charts and bar charts are used to display such
categorical data, and contingency tables are used to analyze them. A scat-
terplot of categorical data would not make sense.

Exercise 1.6. For each of the following, state whether the data are metric
and ordinal, only ordinal, categorical, or you can’t tell:
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a) Temperature

b) Concert tickets

c) Missing data

d) Postal codes

1.5.1. Depicting Categorical Data
Three of the students in my class were of Asian origin, 18 were of Euro-
pean origin (if many generations back), and one was part Indian. To
depict these categories in the form of a pie chart, I first entered the cate-
gorical data Asia, Europe, and India in Column A and the corresponding
numbers 3, 18, 1 in Column B.

To obtain the exploded pie chart in Fig. 1.21, I first used my cursor to
outline the area on the speadsheet in which I’d typed my data. I selected
the Chart Wizard from Excel’s own menu bar, clicked on the Custom
Types tab, selected Pie Explosion, and then went step by step through the
resulting dialog.

A pie chart also lends itself to the depiction of ordinal data resulting
from surveys. If you did a survey as your data collection project, make a
pie chart of your results now.

Such plots and charts have several purposes. One is to summarize the
data. Another is to compare different samples or different populations
(girls versus boys, my class versus your class). For example, we can enter
gender data for the students, being careful to enter the gender codes in
the same order in which the students’ heights and arm spans already 
have been entered. As shown in Fig. 1.22, the first student on our 
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list is a boy, the next seven are girls, then another boy, six girls, and finally
seven boys.

To create the side-by-side boxplots shown in Fig. 1.23, we selected
“Boxplot by Groups” from the DDXL Charts and Plots menu.

Exercise 1.7. Create a boxplot of arm span by sex for the classdata. Also,
create a pie chart by sex for the classdata.
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FIGURE 1.22 Classdata by sex of student.

FIGURE 1.23 Boxplot of class heights by sex.



The primary value of charts and graphs is as an aid to critical thinking.
The figures in this specific example may make you start wondering about
the uneven way in which adolescents go about their growth. The exciting
thing, whether you are a parent or a middle-school teacher, is to observe
how adolescents get more heterogeneous, more individual with each
passing year.

1.5.2. From Observations to Questions
You may want to formulate your theories and suspicions in the form of
questions: Are girls in the sixth grade taller on the average than sixth-
grade boys (not just those in Dr. Good’s sixth-grade class, but in all sixth-
grade classes)? Are they more homogeneous, that is, less variable, in terms
of height? What is the average height of a sixth grader? How reliable is
this estimate? Can height be used to predict arm span in sixth grade? Can
it be used to predict the arm spans of students of any age?

You’ll find straightforward techniques in subsequent chapters for
answering these and other questions. First, we suspect, you’d like the
answer to one really big question: Is statistics really much more difficult
than the sixth-grade exercise we just completed? No, this is about as com-
plicated as it gets.

1.6. MEASURES OF LOCATION
Far too often, we find ourselves put on the spot, forced to come up with a
one-word description of our results when several pages or, better still,
several charts would do. “Take all the time you like,” coming from a boss,
usually means “Tell me in 10 words or less.”

If you were asked to use a single number to describe data you’ve col-
lected, what number would you use? One answer is “the one in the
middle,” the median that we defined earlier in this chapter.

In the majority of cases, we recommend using the arithmetic mean or
arithmetic average rather than the median. To calculate the mean of a
sample of observations by hand, one adds up the values of the observa-
tions, then divides by the number of observations in the sample. If we
observe 3.1, 4.5, and 4.4, the arithmetic mean would be 12/3 = 4. In
symbols, we write the mean of a sample of n observations, Xi with i = 1,

2, . . . , n as .4X X X n
n

X Xn ii

n
1 2 1

1
+ +( ) = =

=Â. . .
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Is adding a set of numbers and then dividing by the number in the set
too much work? To find the mean height of the students in my classroom,
we would use Excel’s average function.

A playground seesaw (or teeter-totter) is symmetric in the absence of
kids. Its midpoint or median corresponds to its center of gravity or its
mean. If you put a heavy kid at one end and two light kids at the other so
that the seesaw balances, the mean will still be at the pivot point, but the
median is located at the second kid.

Another population parameter of interest is the most frequent observa-
tion or mode. In the sample 2, 2, 3, 4 and 5, the mode is 2. Often the
mode is the same as the median or close to it. Sometimes it’s quite differ-
ent, and sometimes, particularly when there is a mixture of populations,
there may be several modes.

Consider the data on heights collected in my sixth-grade classroom. The
mode is at 157.5cm. But aren’t there really two modes, one correspond-
ing to the boys, the other to the girls in the class?

As you can see from Fig. 1.24, a histogram of the heights of my sixth-
graders provides evidence of two modes. When we don’t know in advance
how many subpopulations there are, modes serve a second purpose: to
help establish the number of subpopulations.
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To construct this histogram, I downloaded a trial version of XLStat
from http://www.xlstat.com/index.html and installed this
program after selecting “Add-ins” from Excel’s Tools menu.

As you can see from Fig. 1.25, I selected Describing Data and the His-
tograms from XLStat’s menu.

Exercise 1.8. Compare the mean, median, and mode of the data you’ve 
collected.

Exercise 1.9. A histogram can be of value in locating the modes when there
are 20 to several hundred observations, because it groups the data. Draw
histograms for the data you’ve collected.

1.6.1. Which Measure of Location?
The mean, the median, and the mode are examples of sample statistics.
Statistics serve three purposes:

1. Summarizing data

2. Estimating population parameters

3. Aids to decision making

Our choice of one statistic rather than another depends on the use(s) to
which it is to be put.
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FIGURE 1.25 Using XLStat to create a histogram from the class heights.



For summarizing data: Graphs—boxplots, strip plots, cumulative dis-
tribution functions, and histograms—are essential. If you’re not going to
use a histogram, then for samples of 20 or more be sure to report the
number of modes.

We always recommend using the median if the data are ordinal but not
metric, as well as when the distribution is highly skewed with a few very
large or very small values.

Two good examples of skewness are incomes and house prices. A recent
Los Angeles Times featured a great house in Beverly Park at $80 million
US. A house like that has a large effect on the mean price of homes in an
area. The median house price is far more representative than the mean,
even in Beverly Hills.

The weakness of the arithmetic mean is that it is too easily biased by
extreme values. If we eliminate Pedro from our sample of sixth graders—
he’s exceptionally tall for his age at 5¢7≤ or 167cm—the mean would
change from 151.6 to 3167/21 = 150.8cm. The median would change to
a much lesser degree, shifting from 153.5 to 153cm. Because the median
is not as readily biased by extreme values, we say that the median is more
robust than the mean.

For estimation: In deciding which sample statistic to use in estimating the
corresponding population parameter, we need to distinguish between pre-
cision and accuracy. Let us suppose that Robin Hood and the Sheriff of
Nottingham engage in an archery contest. Each is to launch three arrows
at a target 50 meters (half a soccer pitch) away. The Sheriff launches first,
and his three arrows land one atop the other in a dazzling display of
shooting precision. Unfortunately, all three arrows penetrate and fatally
wound a cow grazing peacefully in the grass nearby. The Sheriff ’s accuracy
leaves much to be desired.
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THE CENTER OF A POPULATION

Median: the value in the middle; the halfway point; that value which has
equal numbers of larger and smaller elements around it.

Arithmetic mean or arithmetic average: the sum of all the elements divided
by their number or, equivalently, that value such that the sum of the devia-
tions of all the elements from it is zero.

Mode: the most frequent value. If a population consists of several sub-
populations, there may be several modes.



We can show mathematically that for very large samples the sample
median and the median of the population from which the sample is drawn
will almost coincide. The same is true for large samples and the mean.
Alas, “large” in this instance may mean larger than we can afford. As you
saw in Exercise 1.1, gathering data takes time and money. With small
samples, the accuracy of an estimator is always suspect.

With most of the samples we encounter in practice, we can expect the
value of the sample median and virtually any other estimator to vary from
sample to sample. One way to find out for small samples how precise a
method of estimation is would be to take a second sample the same size as
the first and see how the estimator varies between the two, then a third,
and fourth, . . . , say 20 samples. But a large sample will always yield more
precise results than a small one. So, if we’d been able to afford it, the sensi-
ble thing would have been to take 20 times as large a sample to begin
with.5

Still, there is an alternative. We can treat our sample as if it were the
original population and take a series of bootstrap samples from it. The vari-
ation in the value of the estimator from bootstrap sample to bootstrap
sample will be a measure of the variation to be expected in the estimator
had we been able to afford to take a series of samples from the population
itself. The larger the size of the original sample, the closer it will be in
composition to the population from which it was drawn, and the more
accurate this measure of precision will be.

1.6.2. The Bootstrap
Let’s see how this process, called bootstrapping, would work with a spe-
cific set of data. Once again, here are the heights of the 22 students in my
sixth-grade class, measured in centimeters and ordered from shortest to
tallest:

137.0 138.5 140.0 141.0 142.0 143.5 145.0 147.0 148.5
150.0 153.0 154.0 155.0 156.6 157.0 158.0 158.5 159.0
160.5 161.0 162.0 167.5

Let’s assume we record each student’s height on an index card, 22 index
cards in all. We put the cards in a big hat, shake them up, pull one out,
and make a note of the height recorded on it. We return the card to the
hat and repeat the procedure for a total of 22 times until I have a second
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sample, the same size as the original. Note that we may draw Jane’s 
card several times as a result of using this method of sampling with
replacement.

Our first bootstrap sample, arranged in increasing order of magnitude
for ease in reading, might look like this:

138.5 138.5 140.0 141.0 141.0 143.5 145.0 147.0 148.5 150.0 153.0
154.0 155.0 156.5 157.0 158.5 159.0 159.0 159.0 160.5 161.0 162.

Several of the values have been repeated; not surprising as we are sampling
with replacement, treating the original sample as a stand-in for the much
larger population from which the original sample was drawn. The
minimum of this bootstrap sample is 138.5, higher than that of the origi-
nal sample; the maximum at 162.0 is less than the original, whereas the
median remains unchanged at 153.5.

137.0 138.5 138.5 141.0 141.0 142.0 143.5 145.0 145.0 147.0
148.5 148.5 150.0 150.0 153.0 155.0 158.0 158.5 160.5 160.5 
161.0 167.5

In this second bootstrap sample, again we find repeated values; this time
the minimum, maximum, and median are 137.0, 167.5, and 148.5,
respectively.

Two bootstrap samples cannot tell us very much. But suppose we were
to take 50 or 100 such samples. Here is a one-way strip plot of the
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medians of 50 bootstrap samples taken from the classroom data:
These values provide an insight into what might have been had we
sampled repeatedly from the original population.

Quick question: What is that population? Does it consist of all classes at
the school where I was teaching? All sixth-grade classes in the district? All
sixth-grade classes in the state? The school was Episcopalian, so perhaps
the population was all sixth-grade classes in Episcopalian schools.

To apply the bootstrap, you’ll need to download and install a trial 
version of the Resampling Stats in Excel add-in from http://www.
resample.com/content/software/excel/download.shtml

Before you add it in, make sure that the “Analysis Toolpak” and “Analy-
sis Toolpak VBA” options are checked in Excel’s Tools/Add-ins menu.

Clicking on the R on the newly appeared Resampling Stats in Excel
menu yields the display of Fig. 1.26. Pressing OK in the dialog box 



results in a single bootstrap sample (with replacement) in the second
column.

To obtain a confidence interval for the 25th percentile of the original
sample, I inserted the percentile formula in the first cell immediately
beneath the bootstrap sample as in Fig. 1.27. I clicked on the RS on
Resampling Stats in Excel menu, and the 25th percentile of each of 100
bootstrap samples was displayed in the first column of a second worksheet,
labeled “Results.” To obtain a confidence interval for the original esti-
mate, I sorted the values in the column and then selected the end points
of the interval. In Fig. 1.28 we see that in 90 out of 100 instances, the
25th percentile of the bootstrap sample was 150.75 or less.

Exercise 1.10. Our original question, you’ll recall, is which is the least vari-
able (most precise) estimate: mean or median? To answer this question, at
least for the data on heights I collected in my classroom, apply the boot-
strap, then construct side-by-side boxplots for the results.
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FIGURE 1.26 Preparing to generate a bootstrap sample.



Exercise 1.11. Apply the bootstrap to the data you collected in Exercise
1.1 to see whether the mean or the median is the more precise estimator.

Exercise 1.12. Can you tell which is the more accurate estimator in the two
previous cases? If not, why not?

1.7. SAMPLES AND POPULATIONS
If it weren’t for person-to-person variation, it really would be easy to find
out what brand of breakfast cereal people prefer or which movie star they
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FIGURE 1.27 First step in getting a confidence interval for P25.

FIGURE 1.28 The eight largest values of the 25th percentile for 100 boot-
strap samples.



want as their leader. Interrogate the first person you encounter on the
street and all will be revealed. As things stand, we must either pay for and
take a total census of everyone’s view (the cost of the 2003 recall election
in California pushed an already near-bankrupt state one step closer to the
edge) or take a sample and learn how to extrapolate from that sample to
the entire population.

In each of the data collection examples in Section 1.2, our observations
were limited to a sample from a population. We measured the height, cir-
cumference, and weight of a dozen humans (or dogs, or hamsters, or
frogs, or crickets) but not all humans or dogs or hamsters. We timed some
individuals (or frogs or turtles) in races but not all. We interviewed some
fellow students but not all.

If we had interviewed a different set of students, would we have 
gotten the same results? Probably not. Would the means, medians, IQRs,
and so forth have been similar for the two sets of students? Maybe, if 
the two samples had been large enough and similar to each other in 
composition.

If we interviewed a sample of women and a sample of men regarding
their views on women’s right to choose, would we get similar answers?
Probably not, as these samples would be drawn from completely different
populations (different, that is, with regard to their views on women’s right
to choose). If we want to know how the citizenry as a whole feels about
an issue, we need to be sure to interview both men and women.

In every statistical study, two questions immediately arise:

1. How large should my sample be?

2. How can I be sure this sample is representative of the population in
which my interest lies?

By the end of Chapter 5, we’ll have enough statistical knowledge to
address the first question, but we can start now to discuss the second.

After I deposited my ballot in a recent election, I walked up to the
interviewer from the Los Angeles Times who was taking an exit poll and
offered to tell her how I’d voted. “Sorry,” she said, “I can only interview
every ninth person.”

What kind of a survey wouldn’t want my views? Obviously, a survey that
wanted to ensure that shy people were as well represented as boisterous
people and that a small group of activists couldn’t bias the results.6
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One sample we would all insist be representative is the jury.7 The
Federal Jury Selection and Service Act of 1968 as revised8 states that citi-
zens cannot be disqualified from jury duty “on account of race, color, reli-
gion, sex, national origin or economic status.”9 The California Code of
Civil Procedure, section 197, tells us how to get a representative sample.
First, you must be sure your sample is taken from the appropriate popula-
tion. In the case of California, the “list of registered voters and the
Department of Motor Vehicles list of licensed drivers and identification
card holders . . . shall be considered inclusive of a representative cross
section of the population.” The Code goes on to describe how a table 
of random numbers or a computer could be used to make the actual 
selection. The bottom line is that to obtain a random, representative
sample:

• Each individual (or item) in the population must have an equal
probability of being selected.

• No individual (item) or class of individuals may be discriminated
against.

There’s good news and bad news. The bad news is that any individual
sample may not be representative. You can flip a coin six times, and every
so often it will come up heads six times in a row. A jury may consist
entirely of white males. The good news is that as we draw larger and
larger samples, samples will resemble the population from which they are
drawn more and more closely.

Exercise 1.13. For each of the three data collection examples of Section 
1.2, describe the populations you would hope to extend your conclusions to
and how you would go about ensuring that your samples were representa-
tive in each instance.

1.7.1. Drawing a Random Sample
Recently, one of our clients asked for help with an audit. Some errors had
been discovered in an invoice they’d submitted to the government for
reimbursement. Because this client, an HMO, made hundreds of such
submissions each month, they wanted to know how prevalent such errors
were. Could we help them select a sample for analysis?
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We could, but we needed to ask the client some questions first. We had
to determine what the population was from which the sample would be
taken and what constituted a sampling unit.

Were we interested in all submissions or just some of them? The client
told us that some submissions went to state agencies and some to Federal
agencies, but for audit purposes their sole interest was in certain Federal
submissions, specifically in submissions for reimbursement for a certain
type of equipment. Here, too, a distinction needed to be made between
custom equipment (with respect to which there was virtually never an
error) and more common off-the-shelf supplies. At this point in the inves-
tigation, our client breathed a sigh of relief. We’d earned our fee, it
appeared, merely by observing that instead of 10,000 plus potentially
erroneous claims, the entire population of interest consisted of only 900
or so items. (When you read earlier that 90% of the effort in statistics was
in collecting the data, we meant exactly that.)

Our client’s staff, like that of most businesses, was used to working with
an electronic spreadsheet. “Can you get us a list of all the files in spread-
sheet form?” we asked.
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Name Start Date

Reed, Agnes 23-Jan-03 0.0055

Ellis, Cynthia 24-Jun-03 0.0991

Wolfe, Carissa 25-Jun-03 0.0173

Rooney, Kevin 9-Jul-03 0.0332

Lane, Lori 18-Jul-03 0.0550

Russo, Will 25-Jul-03 0.1983

Gabel, Steven 28-Jul-03 0.1767

Reed, Oliver 1-Aug-03 0.1913

Huff, Elouise 5-Aug-03 0.0916

Files Sorted By Date

They could and did. The first column of the spreadsheet held each
claim’s ID. The second held the date. We used the spreadsheet’s sort
function to sort all the claims by date and then deleted all those that fell
outside the date range of interest. Next, we inserted a new column and in
the top cell (just below the label row) of the new column, we put the
command =rand(). We copied this command all the way down the
column, using Windows’ standard cut and paste commands ctrl-C and
ctrl-V.



A series of numbers was displayed down the column. To lock these in
place, we went to the Tools menu, clicked on “options” and then on the
calculation tab. We made sure that Calculation was set to manual and
there was no check mark opposite “recalculate before save.”

Now, we resorted the data based on the results of this column. Before-
hand, we’d decided there would be exactly 35 claims in the sample, so we
simply cut and pasted the top 35 items.

1.7.2. Ensuring the Sample is Representative

Exercise 1.14. We’ve already noted that a random sample might not be rep-
resentative. By chance alone, our sample might include men only, or African
Americans but no Asians, or no smokers. How would you go about ensur-
ing that a random sample is representative?

1.8. VARIATION—WITHIN AND BETWEEN
Our work so far has revealed that the values of our observations vary
within a sample as well as between samples taken from the same popula-
tion. Not surprisingly, we can expect even greater variability when our
samples are drawn from different populations. Several different statistics
are used to characterize and report on the within-sample variation.

The most common statistic is termed the variance and is defined as the
sum of the squares of the deviations of the individual observations about
their mean divided by the sample size minus 1. In symbols, if our observa-
tions are labeled X1, X2, up to Xn, and the mean of these observations is
written as X̄ , then the variance s2 (pronounced sigma squared) is equal to

1
1 1

2

n
X Xii

n

-( ) -( )
=Â .
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Name Start Date rand()

Reed, Agnes 23-Jan-03 0.0055

Hason, Arnold 13-Aug-03 0.0104

Wolfe, Carissa 25-Jun-03 0.0173

Sartre, Jean-Paul 17-Oct-03 0.0222

Brown, James 29-Oct-03 0.0226

Rooney, Kevin 9-Jul-03 0.0332

Mills, Louise 4-Sep-03 0.0412

Smith, Thomas 2-Oct-03 0.0497

Dudley, Morris 8-Aug-03 0.0540

Files Insluded in Initial Audit



Exercise 1.15. What is the sum of the deviations of the observations from 

their arithmetic mean? That is, what is ?

The problem with using the variance is that if our observations, on tem-
perature for example, are in degrees Celsius, then the variance would be
expressed in square degrees, whatever these are. More often, we report the
standard deviation s, the square root of the variance, as it is in the same
units as our observations.

Reporting the standard deviation has the further value that if our obser-
vations come from a normal distribution like that depicted in Fig. 1.29,
then we know that the probability is 68% that an observation taken from
such a population lies within plus or minus one standard deviation of the
population mean.

If we have two samples and aren’t sure whether they come from the
same population, one way to check is to express the difference in the
sample means, the between-sample variation, in terms of the within-sample
variation or standard deviation. We’ll investigate this approach in Chapter 3.

If the observations do not come from a normal distribution, then the
standard deviation is less valuable. In such a case, we might want to report
as a measure of dispersion the sample range, which is just the maximum
minus the minimum, or the interquartile range, which is the distance
between the 75th and 25th percentiles. From a boxplot of our data, we

X Xi ii

n
-( )

=Â .1
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FIGURE 1.29 Bell-shaped symmetric curve of a normally distributed 
population.



can get eyeball estimates of the range, as the distance from whisker end to
whisker end, and the interquartile range, which is the length of the box.
Of course, to obtain exact values, we would use R’s quantile function.

Exercise 1.16. What are the variance, standard deviation, and interquartile
range of the classroom data? What are the 90th and 5th percentiles?

This next exercise is only for those familiar with calculus.

Exercise 1.17. Show that we can minimize the sum of squares (Xi -
A)2 if we let A be the sample mean.

1.9. SUMMARY AND REVIEW
In this chapter, you learned how to do the following:

• Compute mathematical (log, exp, sqrt) and statistical (median,
percentile, variance) functions using Excel.

• Create graphs (boxplot, histogram, scatterplot, pie chart, and
dotplot).

• Select random samples.

And we showed how to expand Excel’s capabilities by downloading and
installing add-ins.

The best way to summarize and review the statistical material we’ve
covered so far is with the aid of three additional exercises.

Exercise 1.18. Make a list of all the italicized terms in this chapter. Provide
a definition for each one, along with an example.

Exercise 1.19. The following data on the relationship of performance on
the LSATs to GPA is drawn from a population of 82 law schools. We’ll look
at this data again in Chapters 3 and 4.

LSAT = 576, 635, 558, 578, 666, 580, 555, 661, 651, 605, 653,
575, 545, 574, 594

GPA = 3.39, 3.3, 2.81, 3.03, 3.44, 3.07, 3, 3.43, 3.36, 3.13, 3.12,
2.74, 2.76, 2.88, 2.96

Make boxplots and histograms for both the LSAT score and GPA. Tabu-
late the mean, median, interquartile range, standard deviation, and 95th
and 5th percentiles for both variables.

i

n

=Â 1
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Exercise 1.20. I have a theory that literally all aspects of our behavior are
determined by our birth order (oldest/only, middle, youngest) including
clothing, choice of occupation, and sexual behavior. How would you go
about collecting data to prove or disprove some aspect of this theory?
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IN THIS CHAPTER, YOU’LL LEARN THE RULES of probability and apply them to
games of chance, jury selection, surveys, diagnostic tests, and blood types.
You’ll use R to generate simulated random data and learn how to create
your own R functions.

2.1. PROBABILITY
Because of the variation inherent in the processes we study, we are forced
to speak in probabilistic terms rather than absolutes. We talk about the
probability that a sixth-grader is exactly 150cm tall or, more often, that
his height will lie between two values such as 150cm and 155cm. The
events we study may happen a large proportion of the time, or “almost
always,” but seldom “always” or “never.”

Rather arbitrarily, and some time ago, it was decided that probabilities
would be assigned a value between 0 and 1, that events that were certain
to occur would be assigned probability 1, and that events that would
“never” occur would be given probability 0. When talking about a set of
equally likely events, such as the probability that a fair coin will come up
heads, or an unweighted die will display a “6,” this limitation makes a
great deal of sense. A coin has two sides; we say the probability it comes
up heads is a half and the probability of tails is a half also: 1/2 + 1/2 = 1, the
probability that a coin comes up something.1 Similarly, the probability that
a six-sided die displays a “6” is 1/6. The probability it does not display a
6 is 1 - 1/6 = 5/6.

Chapter 2

Probability

Introduction to Statistics Through Resampling Methods & Microsoft Office Excel®, by Phillip I. Good
Copyright © 2005 John Wiley & Sons, Inc.

1 I had a professor at Berkeley who wrote a great many scholarly articles on the subject of
“coins that stand on edge,” but then that is what professors at Berkeley do.



For every dollar you bet, roulette wheels pay off $36 if you win. This
certainly seems fair, until you notice that not only does the wheel have
slots for the numbers 1 through 36, but there is a slot for 0, and some-
times for double 0, and for triple 000 as well. Thus the real probabilities
of winning and losing are, respectively, 1 chance in 39 and 38/39. In the
long run, you lose one dollar thirty-eight times as often as you win $36.
Even when you win, the casino pockets your dollar, so that in the long
run the casino pockets $3 for every $39 that is bet. (And from whose
pockets does that money come?)

Ah, but you have a clever strategy called a martingale. Every time you
lose, you simply double your bet. So if you lose a dollar the first time, you
lose two dollars the next. Hmm. As the casino always has more money
than you do, you still end up broke. Tell me again why this is a clever
strategy.

Exercise 2.1. List the possible ways in which the following can occur:

a) A person, call him Bill, is born on a specific day of the week.

b) Bill and Alice are born on the same day of the week.

c) Bill and Alice are born on different days of the week.

d) Bill and Alice play a round of a game called “paper, scissor, stone” and
simultaneously display an open hand, two fingers, or a closed fist.

Exercise 2.2. Match the probabilities with their descriptions. A descrip-
tion may match more than one probability.

a) -1 1) infrequent

b) 0 2) virtually impossible

c) 0.10 3) certain to happen

d) 0.25 inch 4) typographical error

e) 0.50 5) more likely than not

f ) 0.80 6) certain

g) 1.0 7) highly unlikely

h) 1.5 8) even odds

9) highly likely

To determine whether a gambling strategy or a statistic is optimal, we
need to know a few of the laws of probability. These laws show us how to
determine the probabilities of combinations of events. For example, if the
probability that an event A will occur is P{A}, then the probability that A
won’t occur P{notA} = 1 - P{A}. This makes sense because either the
event A occurs or it doesn’t, and thus P{A} + P{notA} = 1.
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We’ll also be concerned with the probability that both A and B occur,
P{A and B}, or with the probability that either A occurs or B occurs or
both do, P{A or B}. If two events A and B are mutually exclusive, that is,
if when one occurs the other cannot possibly occur, then the probability
that A or B will occur, P{A or B}, is the sum of their separate probabili-
ties. (Quick, what is the probability that both A and B occur.) The proba-
bility that a six-sided die will show an odd number is thus 3/6 or 1/2. The
probability that a six-sided die will not show an even number is equal to
the probability that a six-sided die will show an odd number.

2.1.1. Events and Outcomes
An outcome is something we can observe, for example, “the coin lands
heads” or “an odd number appears on the die.” Outcomes are made up of
events that may or may not be completely observable. The referee tosses
the coin into the air; it flips over three times before he catches it and
places it face upward on his opposite wrist. “Heads,” and Manchester
United gets the call. But the coin might also have come up heads had the
coin been tossed higher in the air so that it spun three and a half or four
times before being caught. A literal infinity of events makes up the single
observed outcome, “Heads.”

The outcome “an odd number appears on the six-sided die” is com-
posed of three outcomes, 1, 3, and 5, each of which can be the result of
any of an infinity of events. By definition, events are mutually exclusive.
Outcomes may or may not be mutually exclusive, depending on how we
aggregate events.

2.1.2. Venn Diagrams
An excellent way to gain insight into the distinction between events and
outcomes and the laws of probability is via the Venn diagram.2 Figure 2.1
pictures two overlapping outcomes, A and B. For example, A might
consist of all those who respond to a survey that they are nonsmokers,
while B corresponds to the outcome that the respondent has lung cancer.

Every point in the figure corresponds to an event. The events within the
circle A all lead to the outcome A. Note that many of the events or points
in the diagram lie outside both circles. These events correspond to the
outcome “neither A nor B” or, in our example, “an individual who does
smoke and does not have lung cancer.”
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2 Curiously, not a single Venn diagram is to be found in John Venn’s text, The Logic of
Chance, published by Macmillan and Co, London, 1866, with a third edition in 1888.



The circles overlap; thus outcomes A and B are not mutually exclusive.
Indeed, any point in the region of overlap between the two, marked C,
leads to the outcome “A and B.” What can we say about individuals who
lie in region C?

Exercise 2.3. Construct a Venn diagram corresponding to the possible
outcomes of throwing a six-sided die. (I find it easier to use squares than
circles to represent the outcomes, but the choice is up to you.) Does every
event belong to one of the outcomes? Can an event belong to more than
one of these outcomes? Now, shade the area that contains the outcome
“the number face up on the die is odd.” Use a different shading to
outline the outcome “the number on the die is greater than 3.”

Exercise 2.4. Are the outcomes “the number face up on the die is odd”
and “the number on the die is greater than 3” mutually exclusive?

You’ll find many excellent Venn diagrams illustrating probability 
concepts at http://stat-www.berkeley.edu/~stark/Java/
Venn.htm.

Exercise 2.5. According to the Los Angeles Times, scientists are pretty
sure planetoid Sedna has a moon, although as of April 2004 they’d been
unable to see it. The scientists felt at the time there was a 1 in 100 possi-
bility that the moon might have been directly in front of or behind the
planetoid when they looked for it, and a 5 in 100 possibility that they’d
misinterpreted Sedna’s rotation rate. How do you think they came up
with those probabilities?
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FIGURE 2.1 Venn diagram depicting two overlapping outcomes.



2.2. BINOMIAL
Many of our observations take a yes/no or dichotomous form: “My
headache did/didn’t get better.” “Chicago beat/was beaten by Los
Angeles.” “The respondent said he would/wouldn’t vote for Dean.” The
simplest example of a binomial trial is that of a coin flip: Heads I win,
tails you lose.

If the coin is fair, that is, if the only difference between the two mutu-
ally exclusive outcomes lies in their names, then the probability of throw-
ing a head is 1/2, and the probability of throwing a tail is also 1/2. (That’s
what I like about my bet, either way I win.)

By definition, the probability that something will happen is 1 and the
probability that nothing will occur is 0. All other probabilities are some-
where in between.3
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IN THE LONG RUN: SOME MISCONCEPTIONS

When events occur as a result of chance alone, anything can happen and
usually will. You roll craps 7 times in a row, or you flip a coin 10 times and
10 times it comes up heads. Both these events are unlikely, but they are
not impossible. Before reading the balance of this section, test yourself by
seeing if you can answer the following:

You’ve been studying a certain roulette wheel that is divided into 38 sec-
tions for over 4 hours now, and not once during those 4 hours of contin-
uous play has the ball fallen into the number 6 slot. Which of the
following do you feel is more likely?

(1) Number 6 is bound to come up soon.

(2) The wheel is fixed so that number 6 will never come up.

(3) The odds are exactly what they’ve always been, and in the next 4 hours
number 6 will probably come up about 1/38th of the time.

If you answered (2) or (3) you’re on the right track. If you answered (1),
think about the following equivalent question:

You’ve been studying a series of patients treated with a new experimen-
tal drug, all of whom died in excruciating agony despite the treatment.
Do you conclude the drug is bound to cure somebody sooner or later
and take it yourself when you come down with the symptoms? Or do
you decide to abandon this drug and look for an alternative?

3 If you want to be precise, the probability of throwing a head is probably only 0.49999,
and the probability of a tail is also only 0.49999. The leftover probability of 0.00002 is the
probability of all the other outcomes—the coin stands on edge, a sea gull drops down out of
the sky and takes off with it, and so forth.



What about the probability of throwing heads twice in a row? Ten times
in a row? If the coin is fair and the throws independent of one another,
the answers are easy: 1/4th and 1/1024th or (1/2)10.

These answers are based on our belief that when the only differences
among several possible mutually exclusive outcomes are their labels,
“heads” and “tails,” for example, the various outcomes will be equally
likely. If we flip two fair coins or one fair coin twice in a row, there are
four possible outcomes: HH, HT, TH, and TT. Each outcome has equal
probability of occurring. The probability of observing the one outcome in
which we are interested is 1 in 4 or 1/4th. Flip the coin 10 times and
there are 210 or a thousand possible outcomes; one such outcome might
be described as HTTTTTTTTH.

Unscrupulous gamblers have weighted coins so that heads comes up
more often than tails. In such a case, there is a real difference between the
two sides of the coin and the probabilities will be different from those
described above. Suppose as a result of weighting the coin, the probability
of getting a head is now p, where 0 £ p £ 1, and the complementary
probability of getting a tail (or not getting a head) is 1 - p, because p +
(1 - p) = 1. Again, we ask the question, What is the probability of getting
two heads in a row? The answer is p2. Here is why:

To get two heads in a row, we must throw a head on the first toss,
which we expect to do in a proportion p of attempts. Of this proportion,
only a further fraction p of two successive tosses also end with a head, that
is, only p*p trials result in HH. Similarly, the probability of throwing 10
heads in a row is p10.

By the same line of reasoning, we can show that the probability of
throwing nine heads in a row followed by a tail when we use the same
weighted coin each time is p9(1 - p). What is the probability of throwing
9 heads in 10 trials? Is it also p9(1 - p)? No, for the outcome “nine heads
out of ten” includes the case where the first trial is a tail and all the rest
are heads, the second trial is a tail and all the rest are heads, the third trial
is . . . , and so forth, 10 different ways in all. These different ways are
mutually exclusive, that is, if one of these events occurs, the others are
excluded. The probability of the overall event is the sum of the individual
probabilities, or 10 p9(1 - p).
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RULES OF PROBABILITY

• The probability that one of several mutually exclusive events will occur
is the sum of the individual probabilities.

• The probability that a series of independent events will occur is the
product of the individual probabilities.



Exercise 2.6. What is the probability that if you flipped a fair coin you
would get heads five times in a row?

Exercise 2.7. Suppose the incidence of individuals infected with tuber-
culosis on an Indian reservation was 10%. Suppose we test 100 individuals
on the reservation for TB, using a test that was known to be 100% accu-
rate for infected individuals but also yielded positive and erroneous results
for noninfected individuals 10% of the time. How many of these 100 indi-
viduals would you expect to test positive for TB?

Exercise 2.8. The strength of support for our candidate seems to depend
on whether we are interviewing men or women: 50% of male voters
support our candidate, but only 30% of women. What percentage of
women favor some other candidate? If we select a woman and a man at
random and ask which candidate they support, in what percentage of cases
do you think both will say they support our candidate?

Exercise 2.9. Would your answer to the last question in Exercise 2.8 be
the same if the man and the woman were co-workers?

Exercise 2.10. Which do you think would be preferable in a customer-
satisfaction survey? To ask customers if they were or were not satisfied? Or
to ask them to specify their degree of satisfaction on a 5-point scale? Why?

2.2.1. Permutations and Rearrangements
What is the probability of throwing exactly 5 heads in 10 tosses of a coin?
The answer to this last question requires we understand something about
permutations and combinations or rearrangements, a concept that will be
extremely important in succeeding chapters.

Suppose we have three horses in a race. Call them A, B, and C. A could
come in first, B could come in second, and C would be last. ABC is one
possible outcome or permutation. But so are ACB, BAC, BCA, CAB,
CBA, six possibilities or permutations in all. Now suppose we have a nine-
horse race. We could write down all the possibilities, or we could use the
following trick: We choose a winner (nine possibilities); we choose a
second-place finisher (eight remaining possibilities), and so forth until all
positions are assigned. A total of 9! = 9 ¥ 8 ¥ 7 ¥ 6 ¥ 5 ¥ 4 ¥ 3 ¥ 2 ¥ 1
possibilities in all. Had there been N horses in the race, there would have
been N ! possibilities. N ! is read “N factorial.”

Note that N N N! !.= -( )1
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Normally in a horse race, all our attention is focused on the first three
finishers. How many possibilities are there? Using the same reasoning, it is
easy to see there are 9 ¥ 8 ¥ 7 possibilities or 9!/6!. Had there been N
horses in the race, there would have been N !/(N - 3)! possibilities.

Suppose we ask a slightly different question: In how many different
ways can we select three horses from nine entries without regard to order
(that is, we don’t care which comes first, which second, or which third)?
In the previous example, we distinguished between first-, second-, and
third-place finishers; now we’re saying the order of finish doesn’t make
any difference. We already know there are 3! = 3 ¥ 2 ¥ 1 = 6 different
permutations of the three horses that finish in the first three places. So we
take our answer to the preceding question 9!/6! and divide this answer in 

turn by 3!. We write the result as , which is usually read as 9 choose 3.

Note that .

In how many different ways can we assign nine cell cultures to two
unequal experimental groups, one with three cultures and one with six?
This would be the case if we had nine labels and three of the labels read
“vitamin E” while six read “controls.” If we could distinguish the individ-
ual labels, we could assign them in 9! different ways. But the order they
are assigned in each of the experimental groups, 3! ways in the first
instance and 6! in the other, won’t affect the results. Thus there are only 

9!/6!3! or distinguishable ways. We can generalize this result to 

show that the number of distinguishable ways N items can be assigned to 

two groups, one of k items and one of .

What if we were to divide these same nine cultures among three equal-
sized experimental groups? Then we would have 9!/3!3!3! distinguishable 

ways or rearrangements, written as .

Exercise 2.11. What is the value of 4!?

Exercise 2.12. In how may different ways can we divide eight subjects
into two equal-sized groups? Use the Excel formula =COMBIN(8,4).

Exercise 2.13. In how many different ways can we choose 5 from 10 
things?
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2.2.2. Back To the Binomial
We used horses in an example in the previous section, but the same rea-
soning can be applied to coins or survivors in a clinical trial.4 What is the
probability of five heads in 10 tosses? What is the probability that five of
10 breast cancer patients will still be alive after six months?

We answer this question in two stages. First, what is the number of dif-
ferent ways we can get five heads in 10 tosses? We could have thrown
HHHHHTTTTT or HHHHTHTTTT, or some other combination of
five heads and five tails for a total of 10 choose 5 or 10!/(5!5!) ways. The
probability the first of these events occurring—five heads followed by five
tails—is (1/2)10. Combining these results yields

We can generalize the preceding to an arbitrary probability of success p,
0 £ p £ 1. The probability of failure is 1 - p. The probability of k successes
in n trials is given by the binomial formula

Exercise 2.14. What is the probability of getting at least one head in six
flips of a fair coin? (Hint: Think negatively.)

2.2.3 The Problem Jury
At issue in Ballew v. Georgia5 brought before the Supreme Court in 1978
was whether the all-white jury in Ballew’s trial represented a denial of
Ballew’s rights.6 In the 1960s and 1970s, United States courts held uni-
formly that the use of race, gender, religion, or political affiliation to bar
citizens from jury service would not be tolerated. In one case in 1963 in
which I assisted the defense on appeal, we were able to show that only
one black had served on some 163 consecutive jury panels. In this case,
we were objecting—successfully—to the methods used to select the jury.
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4 If, that is, the probability of survival is the same for every patient. When there are obvious
differences from trial to trial—for example, one subject is an otherwise healthy 35-year old
male and the other an elderly 89-year old who has just recovered from pneumonia this
simple binomial model would not apply.
5 435 U.S. 223, 236–237 (1978)
6 Strictly speaking, it is not the litigant but the potential juror whose rights might have been
interfered with. For more on this issue, see Chapter 2 of Applying Statistics in the Courtroom,
Phillip Good, Chapman and Hall, 2001.



In Ballew, the defendant was not objecting to the methods but to the
composition of the specific jury that had judged him at trial.

In the district in which Ballew was tried, blacks comprised 10% of the
population, but Ballew’s jury was entirely white. Justice Blackmun wanted
to know what the probability was that a jury of 12 persons selected from
such a population in accordance with the law would fail to include
members of the minority.

If the population in question is large enough, say a hundred thousand
or so, we can assume that the probability of selecting a nonminority
juryperson is a constant 90 out of 100. The probability of selecting two
nonminority persons in a row according to the product rule for indepen-
dent events is .9 ¥ .9 or .81. Repeating this calculation 10 more times,
once for each of the remaining 10 jurypersons, we get a probability of 
.9 ¥ .9 ¥ . . . . . . ¥ .9 = 0.28243, or 28%.

Not incidentally, Justice Blackmun made exactly this same calculation
and concluded that Ballew had not been denied his rights.

2.2.4. Properties of the Binomial
Suppose we sent out several hundred individuals to interview our cus-
tomers and find out whether they are satisfied with our products. Each
individual had the responsibility of interviewing exactly 10 customers. Col-
lating the results, we observed several things:

• 740 out of every 1000 customers reported they were satisfied.

• Results varied from interviewer to interviewer.

• About 6% of the samples included no dissatisfied customers.

• A little more than 2% of the samples included 6 or more dissatis-
fied customers.

• The median number of satisfied customers per sample was 7.

• The modal number of satisfied customers per sample was 8.

When we reported these results to our boss, she only seemed interested
in the first of them. “Results always vary from interviewer to interviewer,
from sample to sample. And the percentages you reported, apart from 
the 74% satisfaction rate, are immediate consequences of the binomial 
distribution.”

Clearly, our boss was familiar with the formula for k successes in n trials
given in Section 2.2.2. From our initial finding, she knew that P = 0.74.
Thus,

Pr satisfied customers in sample of 10 fork
k

k
k n k{ } = Ê

ËÁ
ˆ
¯̃ ( ) ( ) £ £-10

74 26 0 10. . .
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To find the median of this distribution, go to any vacant cell on the
spreadsheet and type = BinomDist( to bring up the menu shown in 
Fig. 2.2.

By entering a series of successively larger guesses 5, 6, and then 7 in 
the Number_s space, I was able to determine that the median (the 50th
percentile) was 7.

The proportion of samples with no dissatisfied customers is the same as
the percentage of samples all of whose customers are satisfied. To deter-
mine the probability of such an outcome, I filled out the BinomDist menu
as shown in Fig. 2.3.
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FIGURE 2.2 Excel’s BinomDist menu.

FIGURE 2.3 Finding the probability of a specific binomial outcome.



To find the proportion of samples with four or less satisfied customers,
set Cumulative to True and Number_s to 4.

To find the mean or expected value of this binomial distribution, let us
first note that the computation of the arithmetic mean can be simplified
when there are a large number of ties by multiplying each distinct number
k in a sample by the frequency fk with which it occurs; . We
can have only 11 possible outcomes as a result of our interviews: 0, 1, . . .,
or 10 satisfied customers. We know from the binomial distribution the 
frequency fi with which each outcome may be expected to occur; the 

population mean is given by the formula .

To let Excel make the calculations for us, proceed as follows:

1. Enter the numbers 0 through 10 in the first column.

2. Enter the probablity of zero successes in the first cell of the second
column as shown in Fig. 2.4.

3. Copy this cell down the second column.

4. In the first cell of the third column, enter the cross product = A1*B1

5. To find the mean, sum the products in the third column =
SUM(C1:C11) or 7.4.

This result, we notice, is equal to 10*0.74 and, more generally, the
expected value of the binomial distribution is equal to the product of the
sample size and the probability of success at each trial.

Warning: In the preceding example, we assumed that our sample of
1000 customers was large enough that we could use the proportion of
successes in that sample, 740 out of 1000, as if it were the true propor-
tion in the entire distribution of customers. Because of the variation 

i
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inherent in our observations, the true proportion might have been greater
or less than our estimate.

Exercise 2.15. Which is more likely, observing two or more successes in
8 trials with a probability of one-half of observing a success in each trial,
or observing three or more successes in 7 trials with a probability of 0.6 of
observing a success. Which set of trials has the greater expected number of
successes?

Exercise 2.16. Show without using algebra that if X and Y are indepen-
dent identically distributed binomial variables B(n,p), then X + Y is
distributed as B(2n,p).

Unless we have a large number of samples, the observed or empirical
distribution may differ radically from the expected or theoretical distribu-
tion. To generate random samples from a binomial distribution, we need
to download and install BoxSampler, an Excel add-in, from the website
http://www.introductorystatistics.com/escout/tools/
boxsampler.htm.

To assist you in using the program, you’ll find full documentation at
http://www.introductorystatistics.com/escout/BSHelp/
Main.htm.

Let me walk you through the steps for downloading and installation.

1. Once on the website, click on the appropriate “Click Here.”

2. Download to any convenient folder. But be sure to write down the
location where you download the file!!

3. Go to this folder when downloading is complete, and click on
BoxSamplerInstall. You’ll be asked a series of questions, but all are
straightforward and in most cases simply clicking on “Next” will be
sufficient. Make a note of the folder in which the program and associ-
ated files are being installed!!

4. Bring up Excel. Click Tools on the menu bar, then select Add-Ins/
Browse. Locate the folder with the BoxSampler program and add it in.

5. The BoxSampler menu should now appear on your Excel menu bar. (If
not, you need to go to your Windows program menu, find Box
Sampler, and read the BoxSampler Installation Document.)

Once BoxSampler is installed, we can proceed to generate samples from
a binomial distribution as follows:

1. Choose “New Model” from the BoxSampler menu and specify “Distri-
bution” as the model type.

2. Once the BoxSampler worksheet is displayed, set Distribution to 
Binomial, n to 10, and p to 0.74 as shown in Fig. 2.5. Set the Sample
Size to 25.
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3. Click the solid arrow � on the simulator menu 

to display both the complete frequency 

distribution (cells C15 to C25) and the results of 25 samples from that
distribution (cells G12 through G36).

Exercise 2.17. Generate 100 random samples of 10 binomial trials where
each trial has a probability 0.6 of success. Construct a column chart of the
results, using Excel’s Chart Wizard.

2.2.5. Multinomial
Suppose now reporters were to take a survey before an election in which
multiple candidates were competing for the same office. The reporters
wouldn’t just be interested in whether or not votes were going to be cast
for our candidate (a binomial) but which candidate the votes were going
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to go to (a multinomial). A proportion pi of the population intends to
vote for the ith candidate where SiPi = 1. The reporter is going to use the
frequencies {fi} he observes in his survey to estimate the unknown popula-
tion proportions {pi}.7

In another application of the multinomial, we might want to do a
survey of consumers and have them try washing with our soap. After-
wards, we would ask them to state their degree of satisfaction on a 5-point
scale and, at the same time, state their degree of satisfaction with their
present soap. With the comparative data in hand, we could create side-by-
side bar charts of the two sets of preferences to use in our advertising.

2.3. CONDITIONAL PROBABILITY
Conditional probability is one of the most difficult of statistical concepts,
not so much to understand as to accept in all its implications. Recall that
mathematicians arbitrarily assign a probability of 1 to the result that some-
thing will happen—the coin will come up heads or tails—and 0 to the
probability that nothing will occur. But real life is more restricted: A series
of past events has preceded our present, and every future outcome is 
conditioned on this past. Consequently, we need a method whereby the
probabilities of just the remaining possibilities sum to 1.

We define the conditional probability of an event A given another event
B, written P(A|B), to be the ratio P(A and B)/P(B). To show how this
would work, suppose we are playing craps, a game in which we throw two
six-sided die. Clearly, there are 6 ¥ 6 = 36 possible outcomes. One (and
only one) of these 36 outcomes is snake eyes, a 1 and a 1.

Now, suppose we throw one die at a time (a method that is absolutely
forbidden in any real game of craps, whether in the Bellagio or a back
alley) and a 1 appears on the first die. The probability that we will now
roll snake eyes, that is, that the second die will reveal a 1 also, is 1 out of
6 possibilities or (1/36)/(1/6) = 6/36 = 1/6.

The conditional probability of rolling a total of 7 spots on the two dice
is 1/6. And the conditional probability of the spots on the two die summing
to 11, another winning combination, is 0. Yet before we rolled the two
dice, the unconditional probability of rolling snake eyes was 1 out of 36
possibilities and the probability of 11 spots on the two die was 2/36th (a 5
and a 6 or a 6 and a 5).

Now, suppose I walk into the next room where I have two decks of
cards. One is an ordinary deck of 52 cards, half red and half black. The
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other is a trick deck in which all the spots on the cards are black. I throw
a coin—I’m still in the next room so you don’t get to see the result of the
coin toss—and if the coin comes up heads I stick the trick deck in my
pocket, otherwise I take the normal deck. Now, I come back into the
room and offer to show you a card chosen at random from the deck in
my pocket. The card has black spots. Would you like to bet on whether or
not I’m carrying the trick deck?

[STOP: Think about your answer before reading further.]
Common sense would seem to suggest that the odds are still only 50-

50 that it’s the trick deck I’m carrying. You didn’t really learn anything
from seeing a card that could have come from either deck. Or did you?

Let’s use our conditional probability relation to find out whether the
odds have changed. First, what do we know? As the deck was chosen at
random, we know that the probability of the card being drawn from the
trick deck is the same as the probability of it being drawn from the normal
one:

Here, T denotes the event that I was carrying a trick deck and Tc denotes
the complementary event that I was carrying the normal deck.

We also know two conditional probabilities. The probability of drawing
a black card from the trick deck is, of course, 1 while that of drawing a
black card from a deck that has equal numbers of black and red cards is
1/2. In symbols, P(B|T) = 1 and P(B|Tc) is 1/2.

What we’d like to know is whether the two conditional probabilities
P(T|B) and P(Tc|B) are equal. We begin by putting the two sets of facts
we have together, using our conditional probability relation, P(B|T) = P(T
and B)/P(T).

We know two of the values in the first relation, P(B|T) and P(T), and so
we can solve for P(B and T) = P(B|T) P(T) = 1 ¥ 1/2. Similarly, P(B and
Tc) = P(B|Tc) P(Tc) = 1/2 ¥ 1/2 = 1/4.

Take another look at our Venn diagram in Fig. 2.1. All the events in
outcome B are either in A or in its complement Ac. Similarly P(B) = P(B
and T) + P(B and Tc) = 1/2 + 1/4 = 3/4.

We now know all we need to know to calculate the conditional proba-
bility P(T|B), for our conditional probability relation can be rearranged to
interchange the roles of the two outcomes, giving P(T|B) = P(B and T)/
P(B) = 1/2 / 3/4 = 2/3. By definition P(Tc|B) = 1 - P(T|B) = 1/3 < P(T|B).

The odds have changed. Before I showed you the card, the probability
of my showing you a black card was 1 ¥ 1/2 + 1/2 ¥ 1/2 or 3/4. When I

P T P Tc( ) = ( ) = 1
2 .
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showed you a black card, the probability it came from a black deck was 1/2

divided by 3/4 or 2/3!

Exercise 2.18. If R denotes a red card, what would be P(T|R) and
P(Tc|R)?
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A TOO-REAL EXAMPLE

Think the previous example was artificial? That it would never happen in
real life? My wife and I just came back from a car trip. On our way up the
coast, I discovered that my commuter cup leaked, but, desperate for
coffee, I wrapped a towel around the cup and persevered. Not in time, my
wife noted, pointing to the stains on my jacket.

On our way back down, I lucked out and drew the cup that didn’t leak.
My wife congratulated me on my good fortune and then, ignoring all she
might have learned had she read this text, proceeded to drink from the
remaining cup! So much for her new Monterey Bay Aquarium sweat shirt.

2.3.1. Market Basket Analysis8

Many supermarkets collect data on purchases with bar code scanners
located at the checkout counter. Each transaction record lists all items
bought by a customer in a single purchase transaction. Executives want to
know whether certain groups of items are consistently purchased together.
They use this data for adjusting store layouts (placing items optimally with
respect to each other), for cross-selling, for promotions, for catalog
design, and to identify customer segments based on buying patterns.

If a supermarket database has 100,000 point-of-sale transactions, out of
which 2000 include both items A and B and 800 of these include item C,
the association rule “If A and B are purchased then C is purchased on the
same trip” has a support of 800 transactions (alternatively 0.8% =
800/100,000) and a confidence of 40% (=800/2000).

Exercise 2.19. Suppose you have the results of a market basket analysis in
hand. a) If you wanted an estimate of the probability that a customer will
purchase anchovies, would you use the support or the confidence? b) If 
you wanted an estimate of the probability that a customer carrying 

8 In Section 7.8, we make use of a data mining procedure to do a market basket analysis
when there are hundreds of items to choose from.



anchovies will also purchase hot dogs, would you use the support or the
confidence?

2.3.2. Negative Results
Suppose you were to bet on a six-horse race in which the horses carried
varying weights on their saddles. As a result of these handicaps, the proba-
bility that a specific horse will win is exactly the same as that of any other
horse in the race. What is the probability that your horse will come in
first?

Now suppose, to your horror, a horse other than the one you bet on
finishes first. No problem; you say, “I bet on my horse to place,” that is,
you bet it would come in first or second. What is the probability you still
can collect on your ticket? That is, what is the conditional probability of
your horse coming in second when it did not come in first?

One of the other horses did finish first, which leaves five horses still in
the running for second place. Each horse, including the one you bet on,
has the same probability to finish second, so the probability you can still
collect is one out of five. Agreed?

Just then, you hear the announcer call out that the horses are about to
line up for the second race. Again there are six horses and each is equally
likely to finish first. What is the probability that if you bet on a horse to
place in the second race you will collect on your bet? Is this 1/6 + 1/5?

There are three ways we can arrive at the correct answer when all horses
are equally fast:

1. We could notice that the probability that your horse will finish second
is exactly the same as the probability that it will finish first (or the
probability that it will finish dead last, for that matter). As these are
mutually exclusive outcomes, their probabilities may be added. The
probability is 2/6 that your horse finishes first or second.

2. We could list all 6! mutually exclusive outcomes of the race and see
how many would lead to our collecting on our bet—but this would be
a lot of work.

3. Or we could trace the paths that lead to the desired result. For
example, either your horse comes in first, with probability 1/6, or it
does not, with probability 5/6. If it doesn’t come in first, it might still
come in second, with probability 1/5. The overall probability of your
collecting on your bet is Pr{your horse wins} + Pr{your horse doesn’t
win}*Pr{your horse is first among the nonwinning horses} = 1/6 + 5/6*

1/5

= 2/6.

Exercise 2.20. Suppose 10 people are in a class. What is the probability
that no two of them were born on the same day of the week? What is the
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probability that all of them were born in different nonoverlapping four-
week periods? Hint: Write down some of the possibilities, Sam—Monday,
Bill—Tuesday, and so forth.

Exercise 2.21*. A spacecraft depends on five different mission-critical
systems. If any of these systems fail, the flight will end in catastrophe.
Taken on an individual basis, the probability that a mission-critical system
will fail during the flight is 1/10. a) What is the probability that the flight
will be successful?

NASA decides to build in redundancies. Every mission-critical system
has exactly one back-up system that will take over in the event that the
primary system fails. The back-up systems have the same probability of
failure as the primaries. b) What is the probability that the flight will be
successful?

Exercise 2.22. A woman sued a Las Vegas casino alleging the following:
She asked a security guard to hold her slot machine while she hit the
buffet; he let somebody else use “her” machine while she was gone; that
“somebody else” hit the jackpot; that jackpot was rightfully hers. The
casino countered that jackpots were triggered by a random clock keyed to
the 1/1000th of a second; thus, even had the woman been playing the
machine continuously, she might not have hit the jackpot. How would
you rule if you were a judge?

Exercise 2.23. In the U.S. in 1985, there were 2.1 million deaths from
all causes, compared to 1.7 million in 1960. Does this mean it was safer to
live in the U.S. in the ’60s than in the ’80s?

Exercise 2.24*. You are a contestant on “Let’s Make a Deal.” Monty
offers you a choice of three different curtains and tells you there is a
brand new automobile behind one of them plus enough money to pay the
taxes in case you win the car. You tell Monty you want to look behind
curtain number 1. Instead, he throws back curtain number 2 to reveal . . .
a child’s toy. “Would you like to choose curtain number 3 instead of
number 1?” Monty asks. Well, would you?

2.4. INDEPENDENCE
A key element in virtually all the statistical procedures we will consider 
in this text is that the selection of one member of a sample takes place
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independently of the selection of another. In discussing the game of craps,
we assumed that the spots displayed on the first die were independent of
the spots displayed on the second. When statistics are used, we:

1. Assume observations are independent.

2. Test for independence.

3. Try to characterize the nature of the dependence (Chapter 7).

Two events or observations are said to be independent of one another
providing that knowledge of the outcome or value of the one gives you
no information regarding the outcome or value of the other.

In terms of conditional probabilities, two events A and B are indepen-
dent of one another providing that P(A|B) = P(A), that is, our knowledge
that B occurred does not alter the likelihood of A. We can use this rela-
tion to show that if A and B are independent, then the probability they
will both occur is the product of their separate probabilities, P(A and B) =
P(A)*P(B), for from the definition of conditional probability, P(A and B)
= P(A)*P(A and B|A) = P(A)*P(B|A) = P(A)*P(B).

Warning: Whether events are independent of one another will depend
upon the context. Imagine that three psychiatrists interview the same indi-
vidual, who we shall suppose is a paranoid schizophrenic. The interviews
take place at different times, and the psychiatrists are not given the oppor-
tunity to confer with each other either before or after the interviews take
place.

Suppose now that these psychiatrists are asked for their opinions on i)
the individual’s sanity, and, having been informed of the patient’s true
condition, ii) their views on paranoid schizophrenia. In the first case, their
opinions will be independent of one another; in the second case, they will
not.

Exercise 2.25. Can two independent events be mutually exclusive?

Exercise 2.26. Draw a Venn diagram depicting two independent events
one of which is twice as likely to occur as the other.

Exercise 2.27. Do the following constitute independent observations?

A. Several students sitting together at a table asked who their favorite
movie actress is

B. The number of abnormalities in each of several tissue sections taken
from the same individual
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C. Opinions of several individuals whose names you obtained by sticking a
pin through a phone book, and calling the “pinned” name on each
page

D. Opinions of an ardent Democrat and an ardent Republican

E. Today’s price in Australian dollars of the Euro and the Japanese yen.

Exercise 2.28. On the basis of the results in the following contingency
tables, would you say that sex and survival are independent of one another
in Table A? In Table B?
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Table A

Alive Dead

Men 15 5

Women 15 10

Table B

Alive Dead

Men 15 10

Women 15 8

Exercise 2.29. Provide an example in which an observation X is indepen-
dent of the value taken by an observation Y, X is independent of a third
observation Z, and Y is independent of Z, but X, Y, and Z are dependent.

2.5. APPLICATIONS TO GENETICS
All the information needed to construct an organism, whether a pea plant,
a jellyfish, or a person, is encoded in its genes. Each gene contains the
information needed to construct a single protein. Each of our cells has
two copies of each gene, one obtained from our mother and one from our
father. We will contribute just one of these copies to each of our offspring.
Whether it is the copy we got from our father or the one from our
mother is determined entirely by chance.

You could think of this as flipping a coin: One side says “mother’s
gene,” the other side says “father’s gene.” Each time a sperm is created in
our testis or an ovum in our ovary, the coin is flipped.

There may be many forms of a single gene; each such form is called an
allele. Some alleles are defective, incapable of constructing the necessary
protein. For example, my mother was rh-, meaning that both her copies
of the rh gene were incapable of manufacturing the rh protein that is
found in red blood cells. This also means that the copy of the rh gene I
obtained from my mother was rh-. But my blood tests positive for the rh
protein, which means that the rh gene I got from my father was rh+.

Exercise 2.30. The mother of my children was also rh-. What proportion
of our children would you expect to be rh-?



Exercise 2.31. Sixteen percent of the population of the United States are
rh-. What percentage do you expect to have at least one rh- gene?
(Remember, as long as a person has even one rh+ gene, they can manufac-
ture the rh protein.)

The gene responsible for making the A and B blood proteins has three
alleles, A, B, and O. A person with two type O alleles will have blood type
O. A person with one A allele and one B allele will have blood type AB.
Only 4% of the population of the United States have this latter blood type.

Our genes are located on chromosomes. The chromosomes come in
pairs, one member of each pair being inherited from the father and one
from the mother. Your chromosomes are passed onto the offspring inde-
pendently of one another.

Exercise 2. 32. The ABO and rh genes are located on different chromo-
somes. What percentage of the population of the United States would you
expect to have the AB rh+ blood type?

Exercise 2. 33. Forty-five percent of the population of the United States
have type O blood. That is, they do not test positive for either the A or
the B protein. What percentage of the population do you expect to have
at least one O allele?

2.6. SUMMARY AND REVIEW
In this chapter, we introduced the basics of probability theory and inde-
pendence, considered the properties of a discrete probability distribution,
the binomial, and applied the elements of probability to genetics. We
learned how to use the BoxSampler add-in to generate random samples
from various distributions.

Exercise 2.34. Make a list of all the italicized terms in this chapter.
Provide a definition for each one, along with an example.

Exercise 2.35. (Read and reread carefully before even attempting an
answer.) A magician has three decks of cards, one with only red cards, one
that is a normal deck, and one with only black cards. He walks into an
adjoining room and returns with only a single deck. He removes the top
card from the deck and shows it to you. The card is black. What is the
probability that the deck from which the card came consists only of black
cards?
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Exercise 2.36. An integer number is chosen at random. What is the
probability that it is divisible by 2? What is the probability that it is divisi-
ble by 17? What is the probability that it is divisible by 2 and 17? What is
the probability that it is divisible by 2 or 17? (Hint: A Venn diagram
would be a big aid in solving this last part.)

Exercise 2.37. Pete, Phil, and Myron are locked in a squash court after
hours with only a Twinkie and a coin between them. The only thing all
three can agree on is that they want a whole Twinkie or nothing. Myron
suggests that Pete and Phil flip the coin, and that the winner flips a coin
with him to see who gets the Twinkie. Phil, who is a graduate student in
statistics, says this is unfair. Is it unfair and why? How would you decide
who gets the Twinkie?
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IN THIS CHAPTER, YOU’LL LEARN TO RECOGNIZE and describe the probability
distributions of numerical observations made on random selections from a
population. You’ll learn methods for estimating the parameters of these
distributions and for testing hypotheses.

3.1. DISTRIBUTION OF VALUES
Life constantly calls upon us to make decisions. Should penicillin or 
erythromycin be prescribed for an infection? Which fertilizer should be
used to get larger tomatoes? Which style of dress should our company
manufacture (that is, which style will lead to greater sales)?

My wife often asks me what appears to be a very similar question,
“Which dress do you think I should wear to the party?” But this question
is really quite different from the others as it asks what a specific individual,
me, thinks about dresses that are to be worn by another specific individ-
ual, my wife. All the other questions reference the behavior of a yet-to-be-
determined individual selected at random from a population.

Is Alice taller than Peter? It won’t take us long to find out: We just
need to put the two back to back or measure them separately. The some-
what different question, “Are girls taller than boys?” is not answered quite
so readily. How old are the boys and girls? Generally, but not always, girls
are taller than boys until they enter adolescence. Even then, what may be
true in general for boys and girls of a specified age group may not be true
for a particular girl and a particular boy.

Put in its most general and abstract form, what we are asking is whether
a numerical observation X made on an individual drawn at random from
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one population will be larger than a similar numerical observation Y made
on an individual drawn at random from a second population.

3.1.1. Cumulative Distribution Function
Let FW[w] denote the probability that the numerical value of an observa-
tion from the distribution W will be less than or equal to w. FW[w] is a
monotone nondecreasing function. In symbols, if w < z, then 0 = FW [-•]
£ FW [w] = Pr{W £ w} £ Pr{W £ z} = FW [z] £ FW [•] = 1.

Two such cumulative distribution functions FX and GX are depicted in
Fig. 3.1.

Note the following in Fig. 3.1:

1. FX is to the left of GX . As can be seen by drawing lines perpendicular
to the value axis, FX[x] > GX[x] for all values of X. As can be seen by
drawing lines perpendicular to the percentile axis, all the percentiles of
the cumulative distribution G are smaller than the percentiles of the
cumulative distribution F.

2. Most of the time an observation taken at random from the distribution
of X will be smaller if that distribution has cumulative distribution F
than if it has cumulative distribution G.
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FIGURE 3.1 Two cumulative distributions that differ by a shift in the
median value.



3. Still, there is a nonzero probability that an observation from FX will be
larger than one from GX.

Many treatments act by shifting the distribution of values, as shown in
Fig. 3.1. The balance of this chapter and Chapter 4 are concerned with
the detection of such treatment effects. The possibility exists that the
actual effects of treatment are more complex than is depicted in Fig. 3.1.
In such cases, (see, for example, Fig. 3.2) the introductory methods
described in this text may not be immediately applicable.

Exercise 3.0. Is it possible that an observation drawn at random from the
distribution FX depicted in Fig. 3.1 could have a value larger than an
observation drawn at random from the distribution GX?1
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FIGURE 3.2 Two cumulative distributions whose mean and variance differ.

1 If the answer to this exercise is not immediately obvious—you’ll find the correct answer at
the end of this chapter—you should reread Chapters 1 and 2 before proceeding further.



3.1.2 Empirical Distribution Function
Suppose we have collected a sample of n observations x1, x2, . . ., xn. The
empirical cumulative distribution function Fn [x] is equal to the number of
observations that are less than or equal to x divided by the size of our
sample, n. If we’ve sorted the sample so that x1 £ x2 £ . . . £ xn, then

If these observations all come from the same population distribution F
and are independent of one another, then as the sample size n gets larger,
Fn will begin to resemble F more and more closely. We illustrate this point
in Fig. 3.3 with samples of size 10, 100, and 1000, all taken from the
same distribution.

Figure 3.3 reveals what you will find in your own samples in practice:
The distance (or fit) between the empirical and theoretical distributions is
best in the middle of the distribution near the median and worst in the
tails.

3.2. DISCRETE DISTRIBUTIONS
We need to distinguish between discrete random observations like the
binomial and the Poisson (see Section 3.3) made when recording numbers
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FIGURE 3.3 Three empirical distributions based on samples of size 
10, 100, and 1000 independent observations from the same population.



of events and the continuous random observations that are made when
taking measurements.

Discrete random observations usually take only integer values (positive
or negative) with nonzero probability. That is,

The cumulative distribution function F[x] is Sk£x fk.
Recall from the preceding chapter (Section 2.2.2) that binomial vari-

ables had probabilities

where n denoted the number of independent trials and p was the probabil-
ity of success in each trial. The cumulative distribution function of a bino-
mial is a step function, equal to zero for all values less than 0 and to one
for all values greater than or equal to n.

Although it seems obvious that the mean of a sufficiently large number
of sets of n binomial trials each with a probability p of success will be
equal to np, many things that seem obvious in mathematics aren’t.
Besides, if it’s that obvious, we should be able to prove it.

If a variable X takes a discrete set of values {. . .,0,1, . . .,k, . . .} with
corresponding probabilities {. . . f0,f1, . . .,fk, . . .}, its mean or expected
value, written EX, is given by the summation: . . . +0f0+1f1+ . . .+kfk+. . .,
which we may also write as Skkfk.. For a binomial variable, this sum is

Note that the term on the right is equal to zero when k = 0, so we can
start the summation at k = 1. Factoring n and p outside the summation
and using the k in the numerator to reduce k! to (k-1)! we have

EX np
n
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If we change the notation a bit, letting j = (k - 1) and m = (n - 1), this
can be expressed as

The summation on the right side of the equals sign is of the probabilities
associated with all possible outcomes for the binomial random variable
B(n, p), so it must be is equal to 1. Thus EX = np, a result that agrees
with our intuitive feeling that, in the long run, the number of successes
should be proportional to the probability of success.

Suppose EX = q (pronounced theta). The variance of X is defined as
Var(X) = E(X - q)2. In contrast to the sample variance defined in Chapter
1, Var(X) stands for a purely hypothetical value. For observations from a
discrete distribution, Var(X) = Sk(k - q)2fk.

Exercise 3.1. (For math and statistics majors and the intensely curious
only.) Show that the variance of a binomial variable is np(1 - p).

Exercise 3.2. Is the binomial distribution symmetric about its mean? Do
its mean and median coincide? Does it have more than one mode? [Hint:
Use the instructions provided in Section 2.2.4 to display the binomial dis-
tribution for various probabilities of success and numbers of trials.]

Exercise 3.3. Recently, we interviewed 10 people and found that the
majority favored our candidate. Should we conclude that our candidate is
sure to win a majority? Support your opinion with numerical values.

Exercise 3.4. Create plots of the cumulative distribution functions of the
binomial random variables B(20,0.5) and B(20,0.7).

3.3. POISSON: EVENTS RARE IN TIME AND SPACE
The decay of a radioactive element, an appointment to the United States
Supreme Court, and a cavalry officer trampled by his horse have in
common that they are relatively rare but inevitable events. They are
inevitable, that is, if there are enough atoms, enough seconds or years in
the observation period, and enough horses and momentarily careless
riders. Their frequency of occurrence has a Poisson distribution.

The number of events in a given interval has the Poisson distribution if

EX np
m
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p p
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m j m j= Ê
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a) It is the cumulative result of a large number of independent opportuni-
ties each of which has only a small chance of occurring and

b) Events in nonoverlapping intervals are independent.

The intervals can be in space or time. For example, if we seed a small
number of cells into a Petri dish that is divided into a large number of
squares, the distribution of cells per square follows the Poisson. The same
appears to be true in the way a large number of masses in the form of
galaxies are distributed across a very large universe.

Like the binomial variable, a Poisson variable only takes nonnegative
integer values. If the number of events X has a Poisson distribution such
that we may expect an average of l events per unit interval, then Pr{X =
k} = lk e-l/k! for k = 0, 1,2, . . . . For the purpose of testing hypotheses
concerning l as discussed in the chapter following, we needn’t keep track
of the times or locations at which the various events occur; the number of
events k is sufficient.

Exercise 3.5. Show without using algebra that the sum of a Poisson with
expected value l1 and a second independent Poisson with expected value
l2 is also a Poisson with expected value l1 + l2.

3.3.1. Applying the Poisson
John Ross of the Wistar Institute held that there were two approaches to
biology: the analog and the digital. The analog was served by the scintilla-
tion counter: One ground up millions of cells, then measured whatever
radioactivity was left behind in the stew after centrifugation. The digital
was to be found in cloning experiments where any necessary measure-
ments would be done on a cell-by-cell basis.

John was a cloner and, later, as his student, so was I. We’d start out
with 10 million or more cells in a 10-milliliter flask and try to dilute them
down to one cell per milliliter. We were usually successful in cutting down
the numbers to ten thousand or so. Then came the hard part. We’d dilute
the cells down a second time by a factor of 1 :100 and hope we’d end up
with 100 cells in the flask. Sometimes we did. Ninety percent of the time,
we’d end up with between 90 and 110 cells, just as the binomial distribu-
tion predicted. But just because you cut a mixture in half (or a dozen, or
a 100 parts) doesn’t mean you’re going to get equal numbers in each
part. It means the probability of getting a particular cell is the same for all
the parts. With large numbers of cells, things seem to even out. With
small numbers, chance seems to predominate.

Things got worse, when I went to seed the cells into culture dishes.
These dishes, made of plastic, had a rectangular grid cut into their
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bottoms, so they were divided into approximately 100 equal-sized squares.
Dropping 100 cells into the dish meant an average of 1 cell per square.
Unfortunately for cloning purposes, this average didn’t mean much.
Sometimes, 40% or more of the squares would contain two or more cells.
It didn’t take long to figure out why. Planted at random, the cells obey
the Poisson distribution in space. An average of one cell per square 
means

Two cells was one too many. A clone or colony must begin with a single
cell. I had to dilute the mixture a third time to ensure that the percentage
of squares that included two or more cells was vanishingly small. Alas, the
vast majority of squares were now empty; I was forced to spend hundreds
of additional hours peering through the microscope looking for the few
squares that did include a clone.

3.3.2. Comparing Empirical and Theoretical 
Poisson Distributions
BoxSampler includes a Poisson Distribution.

Exercise 3.6. Generate the results of 100 samples from a Poisson distrib-
ution with an expected number of 2 events per interval. Compare the
graph of the resulting empirical frequency distribution with that of the
corresponding theoretical frequency distribution. Determine the 10th,
50th, and 90th percentiles of the theoretical Poisson distribution.

Exercise 3.7. Show that if Pr{X = k} = lk e-l/k! for k = 0, 1,2, . . .
that is, if X is a Poisson variable, then the expected value of 
X = SkkPr{X = k} = l.

Exercise 3.8. In subsequent chapters, we will learn how the statistical
analysis of trials of a new vaccine is often simplified by assuming that the
number of infected individuals follows a Poisson rather than a binomial
distribution. To see how accurate an approximation this might be,
compare the cumulative distribution functions of a binomial variable,
B(100,0.01) and a Poisson variable, P(1) over the range 0 to 100.
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Pr Two or more cells in a square
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3.4. CONTINUOUS DISTRIBUTIONS
The vast majority of the observations we make are on a continuous scale
even if, in practice, we only can make them in discrete increments. For
example, a man’s height might actually be 1.835421117 meters, but we
are not likely to record a value with that degree of accuracy (or want to).
If one’s measuring stick is accurate to the nearest millimeter, then the
probability that an individual selected at random will be exactly 2 meters
tall is really the probability that his or her height will lie between 1.9995
and 2.0004 meters. In such a situation, it is more convenient to replace
the sum of an arbitrarily small number of quite small probabilities with an 

integral where F [x] is the cumulative distribu-

tion function of the continuous variable representing height and f [x] is its 

probability density. Note that F[x] is now defined as .2 As with 

discrete variables, the cumulative distribution function is monotone non-
decreasing from 0 to 1, the distinction being that it is a smooth curve
rather than a step function.

The mathematical expectation of a continuous variable is , 

and its variance is .

3.4.1. The Exponential Distribution
The simplest way to obtain continuously distributed random observations
is via the same process that gave rise to the Poisson. Recall that a Poisson
process is such that events in nonoverlapping intervals are independent
and identically distributed. The times3 between Poisson events follow an
exponential distribution:

When t is zero, exp [-lt] is 1 and F[t|l] is 0. As t increases, exp [-lt]
decreases rapidly toward zero and F[t|l] increases rapidly to 1. The rate of
increase is proportional to the magnitude of the parameter l. In fact, log
(1 - F[t|l]) = -lt. Exercise 3.9 allows you to demonstrate this for 
yourself.
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2 If it’s been a long while or never since you had calculus, note that the differential dx or dy
is a meaningless index, so any letter will do, just as Sk fk means exactly the same thing as Sjfj.
3 Time is almost but not quite continuous. Modern cosmologists now believe that both time
and space are discrete, with time determined only to the nearest 10-23 of a second.



Exercise 3.9. Draw the cumulative distribution function of an exponen-
tially distributed observation with parameter l. Is the median the same as
the mean?

Exercise 3.10. (requires calculus) What is the expected value of an expo-
nentially distributed observation with parameter l?

The times between counts on a Geiger counter follow an exponential
distribution. So do the times between failures of manufactured items like
light bulbs that rely on a single crucial component.

Exercise 3.11. When you walk into a room, you discover the light in a
lamp is burning. Assuming the life of its bulb is exponentially distributed
with an expectation of one year, how long do you expect it to be before
the bulb burns out? [Many people find they get two contradictory answers
to this question. If you are one of them, see Feller, 1966, p.11–12.]

Most real-life systems (including that complex system known as a
human being) have built-in redundancies. Failure can only occur after a
series of n breakdowns. If these breakdowns are independent and expo-
nentially distributed, all with the same parameter l, the probability of
failure of the total system at time t > 0 is

3.4.2. The Normal Distribution
Figure 1.24 depicts the bell-shaped symmetric frequency curve of a nor-
mally distributed population. Its probability density f(x) may be written as

(3.1)

In contrast to the exponential distribution, the normal distribution
depends on two parameters: its expected value q (theta) and its variance s2

(sigma-squared).

Exercise 3.12. How do changes in the values of these parameters affect
the shape of the normal distribution? Hint: Let w = (y - q)/s, so the
probability density function can be written as
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Exercise 3.13. (requires calculus) Show that the expected value of a
normal distribution whose density is given by Equation 3.1 is q and its
variance is s2.

f x wq s
ps

, exp2
2

21
2

1
2[ ] = -( )
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STATISTICS AND PARAMETERS

A statistic is any single value such as the sample mean 1–nSn
k=1Xk that sum-

marizes some aspect of a sample. A parameter is any single value such as
the mean q of a normal distribution that summarizes some aspect of an
entire population. Examples of sample statistics include measures of loca-
tion and central tendency such as the sample mode, sample median, and
sample mean, extrema such as the sample minimum and maximum, and
measures of variation and dispersion such as the sample standard devia-
tion. These same measures are considered parameters when they refer to
an entire population, e.g., population mean q, population range, popula-
tion variance s 2.

In subsequent chapters, we will use sample statistics to estimate the
values of population parameters and to test hypotheses about them.

To see why the normal distribution plays such an important role in sta-
tistics, please complete Exercise 3.14, which requires you to compute the
distribution of the mean of a number of binomial observations. As you
increase the number of observations used to compute the mean from 5 to
12 so that each individual observation makes a smaller relative contribu-
tion to the total, you will see that the distribution of means looks less and
like the binomial distribution from which they were taken and more and
more like a normal distribution. This result will prove to be true regard-
less of the distribution from which the observations used to compute 
the mean are taken, providing that this distribution has a finite mean and
variance.

Exercise 3.14. Generate five binomial observations based on 10 trials
with probability of success p = 0.35 per trial. Compute the mean value of
these five. Repeat this procedure 512 times, computing the mean value
each time. Plot the histogram of these means. Compare with the his-
tograms of a) a sample of 512 normally distributed observations with
expected value 3.5 and variance 2.3, b) a sample of 512 binomial observa-
tions each consisting of 10 trials with probability of success p = 0.4 per



trial. Repeat the entire exercise, computing the mean of 12 rather than 5
binomial observations.

To do this exercise, you’ll need to set up BoxSampler as shown in Fig.
3.4, inserting the formula = Average(Sample) in cell K11.

3.4.3. Mixtures of Normal Distributions
Many real-life distributions strongly resemble mixtures of normal distribu-
tions. Figure 3.5 depicts just such an example in the heights of California
sixth-graders. Although the heights of boys and girls overlap, it is easy to
see that the population of sixth graders is composed of a mixture of the
two sexes.

3.5. PROPERTIES OF INDEPENDENT OBSERVATIONS
As virtually all the statistical procedures in this text require that our obser-
vations be independent of one another, we need to study the properties of
independent observations. Recall from the previous chapter that if X and
Y are independent observations, then
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FIGURE 3.4 Preparing to generate the mean values of binomial samples.



and

If X and Y are independent discrete random variables and their expecta-
tions exist and are finite4, then E{X + Y} = EX + E Y. To see this, suppose
that Y = y. The conditional expectation of X + Y given Y = y is

Taking the average of this conditional expectation over all possible values
of Y yields

E X EX j j EX E
j
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FIGURE 3.5 Distribution of the heights of California sixth-graders.

4 In real life, expectations almost always exist and are finite—the expectations of ratios are a
notable exception.



A similar result holds if X and Y have continuous distributions, provid-
ing that their individual expectations exist and are finite.

Exercise 3.15. Show that for any variable X with a finite expectation,
E(aX) = aEX, where a is a constant.

Exercise 3.16. Show that the expectation of the mean of n independent
identically distributed random variables with finite expectation q is also q.
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The variance of the sum of two independent variables X and Y is the
sum of their variances, providing each of these variances exists and is finite.

Exercise 3.17. Given the preceding result, show that the variance of the
mean of n independent identically distributed observations is 1/nth of the
variance of just one of them. Does this mean that the arithmetic mean is
more precise than any individual observation? Does this mean that the
sample mean will be closer to the mean of the population from which it is
drawn than any individual observation would be, that is, that it would be
more accurate?

3.6. TESTING A HYPOTHESIS
Suppose we were to pot a half-dozen tomato plants in ordinary soil and a
second half-dozen plants in soil enriched with fertilizer. If we wait a few
months, we can determine whether the addition of fertilizer increases the
resulting yield of tomatoes, at least as far as these dozen plants are con-
cerned. But can we extend our findings to all tomatoes?

To ensure that we can extend our findings we need to proceed as
follows: First, the 12 tomato plants used in our study have to be a
random sample from a nursery. If we choose only plants with especially

THE CAUCHY DISTRIBUTION: AN EXCEPTION TO THE RULE

It seems obvious that every distribution should have a mean and a vari-
ance. But telling a mathematician something is “obvious” only encourages
him/her to find an exception. The Cauchy distribution is just one example:
The expression f(x) = 1/P(1 + x) for -• < x < • is a probability density
because Úf(x)dx = 1, but neither its mean nor its variance exists. Does the
Cauchy distribution arise in practice? It might if you study the ratio X/Y of
two independent random variables each distributed as N(0,1).



green leaves for our sample, then our results can be extended only to
plants with especially green leaves. Second, we have to divide the 12 plants
into two treatment groups at random. If we subdivide by any other
method, such as tall plants in one group and short plants in another, then
the experiment would not be about fertilizer but about our choices.

I performed just such an experiment a decade or so ago, only I was
interested in the effects vitamin E might have on the aging of human cells
in culture. After several months of abject failure—contaminated cultures,
spilled containers—I succeeded in cloning human diploid fibroblasts in
eight culture dishes. Four of these dishes were filled with a conventional
nutrient solution and four held an experimental “life-extending” solution
to which vitamin E had been added. All the cells in the dishes came from
the same culture so that the initial distribution of cells was completely
random.

I waited three weeks with my fingers crossed—there is always a risk of
contamination with cell cultures—but at the end of this test period three
dishes of each type had survived. I transplanted the cells, let them grow
for 24 hours in contact with a radioactive label, and then fixed and stained
them before covering them with a photographic emulsion.

Ten days passed, and we were ready to examine the autoradiographs.
“121, 118, 110, 34, 12, 22.” I read and reread these six numbers over
and over again. The larger numbers were indicative of more cell genera-
tions and an extended life span. If the first three generation counts were
from treated colonies and the last three were from untreated, then I 
had found the fountain of youth. Otherwise, I really had nothing to
report.

3.6.1. Analyzing the Experiment
How had I reached this conclusion? Let’s take a second, more searching
look. First, we identify the primary hypothesis and the alternative hypo-
thesis of interest.

I wanted to assess the life-extending properties of a new experimental
treatment with vitamin E. To do this, I had divided my cell cultures into
two groups: one grown in a standard medium and one grown in a
medium containing vitamin E. At the conclusion of the experiment and
after the elimination of several contaminated cultures, both groups con-
sisted of three independently treated dishes.

My primary hypothesis was a null hypothesis, that the growth potential
of a culture would not be affected by the presence of vitamin E in the
media: All the cultures would have equal growth potential. The alterna-
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tive hypothesis of interest was that cells grown in the presence of vitamin
E would be capable of many more cell divisions.

Under the null hypothesis, the labels “treated” and “untreated” provide
no information about the outcomes: The observations are expected to
have more or less the same values in each of the two experimental groups.
If they do differ, it should only be as a result of some uncontrollable
random fluctuation. Thus if this null or no-difference hypothesis were
true, I was free to exchange the labels.

The alternative is a distributional shift like that depicted in Fig. 3.1, in
which greater numbers of cell generations are to be expected as the result
of treatment with vitamin E (though the occasional smaller value cannot
be ruled out completely).

The next step is to choose a test statistic that discriminates between the
hypothesis and the alternative. The statistic I chose was the sum of the
counts in the group treated with vitamin E. If the alternative hypothesis is
true, most of the time this sum ought to be larger than the sum of the
counts in the untreated group. If the null hypothesis is true, that is, if it
doesn’t make any difference which treatment the cells receive, then the
sums of the two groups of observations should be approximately the same.
One sum might be smaller or larger than the other by chance, but most of
the time the two shouldn’t be all that different.

The third step is to compute the test statistic for each of the possible
relabelings and compare these values with the value of the test statistic as
the data was labeled originally. As it happened, the first three observa-
tions—121, 118, and 110—were those belonging to the cultures that
received vitamin E. The value of the test statistic for the observations as
originally labeled is 349 = 121 + 118 + 110.

I began to rearrange (permute) the observations, randomly reassigning
the six labels, three “treated” and three “untreated,” to the six observa-
tions, for example, treated, 121 118 34, and untreated, 110 12 22. In this
particular rearrangement, the sum of the observations in the first (treated) 

group is 273. I repeated this step until all distinct rearrange-

ments had been examined.5
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5 Determination of the number of relabelings, “6 choose 3” in the present case, is consid-
ered in Section 2.2.1.



The sum of the observations in the original vitamin E-treated group, 349,
is equaled only once and never exceeded in the 20 distinct random rela-
belings. If chance alone is operating, then such an extreme value is a rare,
only 1-time-in-20 event. If I reject the null hypothesis and embrace the
alternative that the treatment is effective and responsible for the observed
difference, I only risk making an error and rejecting a true hypothesis
once in every 20 times.

In this instance, I did make just such an error. I was never able to repli-
cate the observed life-promoting properties of vitamin E in other repeti-
tions of this experiment. Good statistical methods can reduce and contain
the probability of making a bad decision, but they cannot eliminate the
possibility.

Exercise 3.18. How was the analysis of the cell culture experiment
affected by the loss of two of the cultures because of contamination?
Suppose these cultures had escaped contamination and given rise to 
the observations 90 and 95; what would be the results of a permutation
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Sum of 
First Group Second Group First Group

1. 121 118 110 34 22 12 349

2. 121 118 34 110 22 12 273

3. 121 110 34 118 22 12 265

4. 118 110 34 121 22 12 262

5. 121 118 22 110 34 12 261

6. 121 110 22 118 34 12 253

7. 121 118 12 110 34 22 251

8. 118 110 22 121 34 12 250

9. 121 110 12 118 34 22 243

10. 118 110 12 121 34 22 240

11. 121 34 22 118 110 12 177

12. 118 34 22 121 110 12 174

13. 121 34 12 118 110 22 167

14. 110 34 22 121 118 12 166

15. 118 34 12 121 110 22 164

16. 110 34 12 121 118 22 156

17. 121 22 12 118 110 34 155

18. 118 22 12 121 110 34 152

19. 110 22 12 121 118 34 144

20. 34 22 12 121 118 110 68



analysis applied to the new, enlarged data set consisting of the following
cell counts

Treated 121 118 110 90 Untreated 95 34 22 12?

Hint: To determine how probable an outcome like this is by chance alone,
first determine how many possible rearrangements there are. Then list all
the rearrangements that are as or more extreme than this one.

3.6.2. Two Types of Errors
In the preceding example, I risked rejecting the null hypothesis in error
5% of the time. Statisticians call this making a Type I error, and they call
the 5%, the significance level. In fact, I did make such an error, as in future
experiments vitamin E proved to be valueless in extending the life span of
human cells in culture.

On the other hand, suppose the null hypothesis had been false, that
treatment with vitamin E really did extend life span, and I had failed to
reject the null hypothesis. Statisticians call this making a Type II error.

The consequences of each type of error are quite different and depend
upon the context of the investigation. Consider the table of possibilities
(Table 3.1) arising from an investigation of the possible carcinogenicity of
a new headache cure.

We may luck out in that our sample supports the correct hypothesis,
but we always run the risk of making either a Type I or a Type II error.
We can’t avoid it. If we use a smaller significance level, say 1%, then if the
null hypothesis is false, we are more likely to make a Type II error. If we
always accept the null hypothesis, a significance level of 0%, then we guar-
antee you’ll make a Type II error if the null hypothesis is false. This seems
kind of stupid: Why bother to gather data if you’re not going to use it?
But if you read or live Dilbert, then you know this happens all the time.
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The Facts Investigator’s Decision

Not a Carcinogen Not a Carcinogen Compound a Carcinogen
Type I error. Manufacturer

misses opportunity for profit.
Public denied access to
effective treatment.

Carcinogen Type II error. Manufacturer
sued.

Patients die; families suffer.

TABLE 3.1 Decision Making Under Uncertainty



Exercise 3.19. The nurses have petitioned the CEO of a hospital to allow
them to work 12-hour shifts. He wants to please them but is afraid that
the frequency of errors may increase as a result of the longer shifts. He
decides to conduct a study and to test the null hypothesis that there is no
increase in error rate as a result of working longer shifts against the alter-
native that the frequency of errors increases by at least 30%. Describe the
losses associated with Type I and Type II errors.

Exercise 3.20. Design a study. Describe a primary hypothesis of your
own along with one or more likely alternatives. The truth or falsity of
your chosen hypothesis should have measurable monetary consequences. If
you were to test your hypothesis, what would be the consequences of
making a Type I error? A Type II error?

Exercise 3.21. Suppose I’m (almost) confident that my candidate will get
60% or more of the votes in the next primary. The alternative that scares
me is that she will get 40% or less. To test my confident hypothesis, I
decide to interview 20 people selected at random in a shopping mall and
reject my hypothesis if 7 or fewer say they will vote for her. What is the
probability of my making a Type I error? What is the probability of my
retaining confidence in my candidate if only 40% of the general population
favor her, i.e., committing a Type II error? How can I reduce the proba-
bility of making a Type II error while keeping the probability of making a
Type I error the same?

Exercise 3.22. Individuals were asked to complete an extensive question-
naire concerning their political views and eating preferences. Analyzing the
results, a sociologist performed 20 different tests of hypotheses. Unknown
to the sociologist, the null hypothesis was true in all 20 cases. What is the
probability that the sociologist rejected at least one of the hypotheses at
the 5% significance level?

3.7. ESTIMATING EFFECT SIZE
In the previous example, we developed a test of the null hypothesis of no
treatment effect against the alternative hypothesis that a positive effect
existed. But in many situations, we would also want to know the 
magnitude of the effect. Does vitamin E extend cell life span by 3 cell
generations? By 10? By 15?

In Section 1.6.2 we showed how to use the bootstrap to estimate the
precision of the sample mean or median (or, indeed, almost any sample
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statistic) as an estimator of a population parameter. As a by-product, we
obtain an interval estimate of the corresponding population parameter.

For example, if P05 and P95 are the 5th and 95th percentiles of the boot-
strap distribution of the median of the law school LSAT data you used for
Exercise 1.16, then the set of values between P05 and P95 provides a 90%
confidence interval for the median of the population from which the data
were taken.

Exercise 3.23. Obtain an 85% confidence interval for the median of the
population from which the LSAT data were taken.

Exercise 3.24. Can this same bootstrap technique be used to obtain a
confidence interval for the 90th percentile of the population? For the
maximum value in the population?

3.7.1. Confidence Interval for Difference in Means
Suppose we have independently collected samples from two populations
and want to know the following:

• Do the populations from which they are drawn have the same
means?

• If the means are not the same, then what is the difference between
them?

To find out, we would let each sample stand in place of the population
from which it is drawn, take a series of bootstrap samples separately from
each sample, and compute the difference in means each time.

Suppose our data are stored in two vectors called “control” and
“treated” as shown in Fig. 3.6. We begin by creating a new BoxSampler
model.

Next, we enter the formula = AVERAGE(Sample1)–
AVERAGE(Sample2) in cell R11 of the BoxSampler worksheet 
(Fig. 3.7). We click the double arrow �� on the simulation bar to gener-
ate a set of bootstrap results for the difference in means in column R.
Finally, we use Excel’s sort command to sort these differences in descend-
ing order.

In the simulation I ran, the largest differences were 7.02 6.11 4.70 1.74
1.43 1.08 and -0.01. I discarded the top 5 as well as the bottom 5 in
value to obtain a 90% (90 out of a 100) confidence interval of [-13.01,
1.08] for the difference in population means. As this interval contains
zero, I wasn’t able to reject the possibility at the 10% significance level
that the difference in population means was zero.
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FIGURE 3.6 Preparing to estimate difference in population means.

FIGURE 3.7 Entering data and sample sizes in the BoxSampler worksheet.



3.7.2. Are Two Variables Correlated?
Yet another example of the bootstrap’s application lies in the measurement
of the correlation or degree of agreement between two variables. The
Pearson correlation of two variables X and Y is defined as the ratio of the
covariance between X and Y and the product of the standard deviations of
X and Y. The covariance of X and Y is given by the formula

.

Recall that if X and Y are independent, the E(XY) = (EX)(EY), so that
the expected value of the covariance and hence the correlation of X and Y
is zero. If X and Y increase more or less together as do, for example, the
height and weight of individuals, their covariance and their correlation will
be positive so that we say that height and weight are positively correlated.
I had a boss, more than once, who believed that the more abuse and criti-
cism he heaped on an individual the more work he could get out of them.
Not. Abuse and productivity are negatively correlated; heap on the abuse
and work output declines.

The reason we divide by the product of the standard deviations in
assessing the degree of agreement between two variables is that it renders
the correlation coefficient free of the units of measurement.

If X = -Y, so that the two variables are totally dependent, the correla-
tion coefficient, usually represented in symbols by the Greek letter r (rho)
will be -1. In all cases, -1 £ r £ 1.

Is systolic blood pressure an increasing function of age? To find out, I
entered the data from 15 subjects in an Excel worksheet as shown in Fig.
3.8. Each row of the worksheet corresponds to a single subject. As
described in Section 1.4.2, Resampling Stats was used to select a single
bootstrap sample of subjects. That is, each row in the bootstrap sample
corresponded to one of the rows of observations in the original sample.

Making use of the data from the bootstrap samples, I entered the
formula for the correlation of Systolic Blood Pressure and Age in a conve-
nient empty cell of the worksheet as shown in Fig. 3.9 and then used the
RS button to generate 100 values of the correlation coefficient.

Exercise 3.25. Using the LSAT data from Exercise 1.16 and the boot-
strap, obtain an interval estimate for the correlation between the LSAT
score and the student’s subsequent GPA.

Exercise 3.26. Trying to decide whether to take a trip to Paris or Tokyo,
a student kept track of how many euros and yen his dollars would buy.
Month by month he found that the values of both currencies were rising.

X X nk kk

n
-( ) -( ) -( )

=Â Y Y 1
1
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FIGURE 3.8 Preparing to generate a bootstrap sample of subjects.

FIGURE 3.9 Calculating the correlation between systolic blood pressure
and age.



Does this mean that improvements in the European economy are reflected
by improvements in the Japanese economy?

3.7.3. Using Confidence Intervals to Test Hypotheses
Suppose we have derived a 90% confidence interval for some parameter,
for example, a confidence interval for the difference in means between two
populations, one of which was treated and one that was not. We can use
this interval to test the hypothesis that the difference in means is 4 units,
by accepting this hypothesis if 4 is included in the confidence interval and
rejecting it otherwise. If our alternative hypothesis is nondirectional and
two-sided, qA π qB, the test will have a Type I error of 100% - 90% = 10%.

Clearly, hypothesis tests and confidence intervals are intimately related.
Suppose we test a series of hypotheses concerning a parameter q. For
example, in the vitamin E experiment, we could test the hypothesis that
vitamin E has no effect, q = 0, or that vitamin E increases life span by 25
generations, q = 25, or that it increases it by 50 generations, q = 50. In
each case, whenever we accept the hypothesis, the corresponding value of
the parameter should be included in the confidence interval.

In this example, we are really performing a series of one-sided tests. Our
hypotheses are that q = 0 against the one-sided alternative that q > 0, that
q £ 25 against the alternative that q > 25 and so forth. Our corresponding
confidence interval will be one-sided also; we will conclude q < qU if we
accept the hypothesis q = q0 for all values of q0 < qU and reject it for all
values of q0 ≥ qU. One-sided tests lead to one-sided confidence intervals
and two-sided tests to two-sided confidence intervals.

Exercise 3.27. What is the relationship between the significance level of a
test and the confidence level of the corresponding interval estimate?

Exercise 3.28. In each of the following instances would you use a one-
sided or a two-sided test?

i. Determine whether men or women do better on math tests.

ii. Test the hypothesis that women can do as well as men on math tests.

iii. In Commonwealth v. Rizzo et al., 466 F. Supp 1219 (E.D. Pa 1979),
help the judge decide whether certain races were discriminated against
by the Philadelphia Fire Department by means of an unfair test.

iv. Test whether increasing a dose of a drug will increase the number of
cures.

Exercise 3.29. Use the data of Exercise 3.18 to derive an 80% upper con-
fidence bound for the effect of vitamin E to the nearest 5 cell generations.
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3.8. SUMMARY AND REVIEW
In this chapter, we considered the form of four common distributions,
two discrete—the binomial and the Poisson—and two continuous—the
normal and the exponential. We provided the R functions necessary to
generate random samples from the various distributions and to display
plots side by side on the same graph.

We noted that, as sample size increases, the observed or empirical distri-
bution of values more closely resembles the theoretical. The distributions
of sample statistics such as the sample mean and sample variance are differ-
ent from the distribution of individual values. In particular, under very
general conditions with moderate-size samples, the distribution of the
sample mean will take on the form of a normal distribution. We consid-
ered two nonparametric methods—the bootstrap and the permutation
test—for estimating the values of distribution parameters and for testing
hypotheses about them. We found that because of the variation from
sample to sample, we run the risk of making one of two types of error
when testing a hypothesis, each with quite different consequences. 
Normally when testing hypotheses, we set a bound called the significance
level on the probability of making a Type I error and devise our tests
accordingly.

Finally, we noted the relationship between our interval estimates and
our hypothesis tests.

Exercise 3.30. Make a list of all the italicized terms in this chapter.
Provide a definition for each one, along with an example.

Exercise 3.31. A farmer was scattering seeds in a field so they would be
at least a foot apart 90% of the time. On the average, how many seeds
should he sow per square foot?

The answer to Exercise 3.0 is yes, of course; an observation or even a
sample of observations from one population may be larger than observa-
tions from another population even if the vast majority of observations are
quite the reverse. This variation from observation to observation is why
before a drug is approved for marketing its effects must be demonstrated
in a large number of individuals and not just in one or two.
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IN THIS CHAPTER, WE DEVELOP IMPROVED METHODS for testing hypotheses
by means of the bootstrap, introduce parametric hypothesis testing
methods, and apply these and other methods to problems involving one
sample, two samples, and many samples. We then address the obvious but
essential question: How do we choose the method and the statistic that is
best for the problem at hand?

4.1. ONE-SAMPLE PROBLEMS
A fast-food restaurant claims that 75% of its revenue is from the “drive-
thru.” The owner collected two weeks’ worth of receipts from the restau-
rant and turned them over to you. Each day’s receipt shows the total
revenue and the “drive-thru” revenue for that day.

The owner does not claim that their drive-thru produces 75% of their
revenue, day in and day out, only that their overall average is 75%. In this
section, we consider four methods for testing the restaurant owner’s
hypothesis.

4.1.1. Percentile Bootstrap
We’ve already made use of the percentile or uncorrected bootstrap on
several occasions, first to estimate precision and then to obtain interval
estimates for population parameters. Readily computed, the bootstrap
seems ideal for use with the drive-thru problem. Still, if something seems
too good to be true, it probably is. Unless corrected, bootstrap interval
estimates are inaccurate (that is, they will include the true value of the
unknown parameter less often than the stated confidence probability) and
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imprecise (that is, they will include more erroneous values of the unknown
parameter than is desirable). When the original samples contain less than a
hundred observations, the confidence bounds based on the primitive boot-
strap may vary widely from simulation to simulation.

4.1.2. Parametric Bootstrap
If we know something about the population from which the sample is
taken, we can improve our bootstrap confidence intervals, making them
both more accurate (more likely to cover the true value of the population
parameter) and more precise (narrower and thus less likely to include false
values of the population parameter). For example, if we know that this
population has an exponential distribution, we would use the sample mean
to estimate the population mean. Then we would draw a series of random
samples of the same size as our original sample from an exponential distri-
bution whose mathematical expectation was equal to the sample mean to
obtain a confidence interval for the population parameter of interest.

This parametric approach is of particular value when we are trying to
estimate one of the tail percentiles such as P10 or P90, for the sample alone
seldom has sufficient information.

Here are the steps to deriving a parametric bootstrap:

1. Establish the appropriate distribution, let us say, the exponential.

2. Use Excel to calculate the sample average.

3. Use the sample average as an estimate of the population average in the
following steps.

4. Select “NewModel” from the BoxSampler menu. Set ModelType to
“Distribution.”

5. Set Distribution to “Exponential” on the BoxSampler worksheet. Set
the value of the parameter l to the sample average.

6. Set the sample size G11 to the size of your original sample. Set the
number of simulations J11 to 400. Set the statistic K11 to = Func-
tion(Sample) where “Function” is the statistic for which you are
attempting to derive a confidence interval. For example =
Percentile(Sample, .25)

Exercise 4.1. Obtain a 90% confidence interval for the mean time to
failure of a new component based on the following observations: 46 97
27 32 39 23 53 60 145 11 100 47 39 1 150 5 82 115 11 39 36 109 52
6 22 193 10 34 3 97 45 23 67 0 37

Exercise 4.2. Would you accept or reject the hypothesis at the 10% signif-
icance level that the mean time to failure in the population from which
the sample depicted in Exercise 4.01 was drawn is 97?
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Exercise 4.3. Obtain an 80% confidence interval with the parametric
bootstrap for the IQR of the LSAT data. Careful: What would be the
most appropriate continuous distribution to use?

4.1.3. Student’s t
One of the first hypthesis tests to be developed was that of Student’s t.
This test, which dates back to 1908, takes advantage of our knowledge
that the distribution of the mean of a sample is usually close to that of a
normal distribution. When our observations are normally distributed, then
the statistic

has a t distribution with n - 1 degrees of freedom where n is the sample
size, q is the population mean, and s is the standard deviation of the
sample. Two things should be noted about this statistic:

1. Its distribution is independent of the unknown population variance.

2. If we guess wrong about the value of the unknown population mean
and subtract a guesstimate of q smaller than the correct value, then the
observed values of the t statistic will tend to be larger than the values
predicted from a comparison with the Student’s t distribution.

We can make use of this latter property to obtain a test of the hypothe-
sis that the percentage of drive-in sales averages 75%, not just for our
sample of sales data, but also for past and near-future sales. (Quick: Would
this be a one-sided or a two-sided test?)

To perform the test, we pull down the DDXL menu, select first
“Hypothesis Tests” and then “1 Var t Test.” Completing the t Test Setup
as shown in Fig. 4.1 yields the results in Fig. 4.2.

The sample estimate of $73.62 is not significiantly different from our
hypothesis of $75, the p value is close to 50%, and we accept the claim of
the restaurant’s owner.

Exercise 4.4. Would you accept or reject the restaurant owner’s hypothe-
sis at the 5% significance level after examining the entire two weeks’ worth
of data: 80, 81, 65, 72, 73, 69, 70, 79, 78, 62, 65, 66, 67, 75?

Exercise 4.5. In describing the extent to which we might extrapolate
from our present sample of drive-in data, we used the qualifying phrase
“near-future.” Is this qualification necessary, or would you feel confident

t
X
s n

=
-q
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FIGURE 4.1 Setting up a one-sample t-test using DDXL.

FIGURE 4.2 Results of a one-sample t-test.



in extrapolating from our sample to all future sales at this particular drive-
in? If not, why not?

Exercise 4.6. Although some variation is be expected in the width of
screws coming off an assembly line, the ideal width of this particular type
of screw is 10.00 and the line should be halted if it looks as if the mean
width of the screws produced will exceed 10.01 or fall below 9.99. On the
basis of the following 10 observations, would you call for the line to halt
so they can adjust the milling machine: 9.983, 10.020, 10.001, 9.981,
10.016, 9.992, 10.023, 9.985, 10.035, 9.960?

Exercise 4.7. In Exercise 4.6, what kind of economic losses do you feel
would be associated with Type I and Type II errors?

4.2. COMPARING TWO SAMPLES
In this section, we’ll examine the use of the binomial, Student’s t, permu-
tation methods, and the bootstrap for comparing two samples and then
address the question of which is the best test to use.

4.2.1. Comparing Two Poisson Distributions
Suppose in designing a new nuclear submarine you become concerned
about the amount of radioactive exposure that will be received by the
crew. You conduct a test of two possible shielding materials. During 10
minutes of exposure to a power plant using each material in turn as a
shield, you record 14 counts with material A and only four with experi-
mental material B. Can you conclude that B is safer than A?

The answer lies not with the Poisson but the binomial. If the materials
are equal in their shielding capabilities, then each of the 18 recorded
counts is as likely to be obtained through the first material as through the
second. In other words, under the null hypothesis you would be observing
a binomial distribution with 18 trials, each with probability 1/2 of success
or B(18, 1/2).

I used just such a procedure in analyzing the results of a large-scale clin-
ical trial involving some 100,000 service men and women who had been
injected with either a new experimental vaccine or a saline control. Epi-
demics among service personnel can be particularly serious as they live in
such close quarters. Fortunately, there were few outbreaks of the disease
we were inoculating against during our testing period. Fortunate for the
men and women of our armed services, that is.
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When the year of our trial was completed, only 150 individuals had
contracted the disease, which meant an effective sample size of 150. The
differences in numbers of diseased individuals between the control and
treated groups were not statistically significant.

Exercise 4.8. Can you conclude that material B is safer than A?

4.2.2. What Should We Measure?
Suppose you’ve got this strange notion that your college’s hockey team is
better than mine. We compare win/lost records for last season and see
that while McGill won 11 of its 15 games, your team only won 8 of 14.
But is this difference statistically significant? With the outcome of each
game being success or failure, and successive games being independent of
one another, it looks at first glance as if we have two series of binomial
trials (as we’ll see in a moment, this is highly questionable). We 
could derive confidence intervals for each of the two binomial 
parameters. If these intervals do not overlap, then the difference in
win/loss records is statistically significant. But do win/loss records really
tell the story?

Let’s make the comparison another way by comparing total goals.
McGill scored a total of 28 goals last season and your team 32. Using the
approach described in the preceding section, we could look at this set of
observations as a binomial with 28 + 32 = 60 trials, and test the hypothe-
sis that p � 1/2 (that is, McGill is no more likely to have scored the goal
than your team) against the alternative that p > 1/2.

This latter approach has several problems. For one, your team played
fewer games than McGill. But more telling, and the principal objection to
all the methods we’ve discussed so far, the schedules of our two teams
may not be comparable.

With binomial trials, the probability of success must be the same for
each trial. Clearly, this is not the case here. We need to correct for the dif-
ferences among opponents. After much discussion—what else is the off-
season for?—you and I decide to award points for each game using the
formula S = O + GF - GA, where GF stands for goals for, GA for goals
against, and O is the value awarded for playing a specific opponent. In
coming up with this formula and with the various values for O, we relied
not on our knowledge of statistics but on our hockey expertise. This
reliance on domain expertise is typical of most real-world applications of
statistics.

The point totals we came up with read like this
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McGill 4, -2, 1, 3, 5, 5, 0, -1, 6, 2, 2, 3, -2, -1, 4

Your School 3, 4, 4, -3, 3, 2, 2, 2, 4, 5, 1, -2, 2, 1

Curiously, your school’s first four point totals, all involving games against
teams from other leagues, were actually losses, their high point value
being the result of the high caliber of the opponents. I’ll give you guys
credit for trying.

4.2.3. Permutation Monte Carlo
Straightforward application of the permutation methods discussed in
Section 3.6.1 to the hockey data is next to impossible. Imagine how many

years it would take us to look at all possible rearrangements! 

What we can do today—something not possible with the primitive calcula-
tors that were all that was available in the 1930s when permutation
methods were first introduced—is to look at a large random sample of
rearrangements.

We prepare to reshuffle the data as shown in Fig. 4.3 with the following
steps:

14 15
15
+Ê

ËÁ
ˆ
¯̃
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1. Use the cursor to outline the two columns that we wish to shuffle, that
is, to rearrange again in two columns, one with 15 observations and
one with 14.

2. Press the S on the Resampling Stats in Excel menu.

3. Note the location of the top left cell where you wish to position the
reshuffled data.

4. Click OK.

Our objective is to see in what proportion of randomly generated
rearrangements the sum of the observations in the first of the sample
equals or exceeds the original sum of the observations in the first sample.
Once a single rearrangement has been generated, we enter the following
formula in any convenient empty cell:

=IF(SUM(C3:C17)>=SUM(A3:A17),1,0)

Select RS (repeat and score) and set the number of trials to 400. When
we click OK, 400 random rearrangements are generated and the preceding
formula is evaluated for each rearrangment and the result placed in the
first column of a separate “Results” worksheet.

Our p value is the proportion of 1s among the 1s and 0s in this
column. We calculate it with the following formula:

=SUM(A1:A400)/400

Exercise 4.9. Show that we would have gotten exactly the same p value
had we used the difference in means between the samples instead of the
sum of the observations in the first sample as our permutation test 
statistic.

Exercise 4.10. (for mathematics and statistics majors only) Show that we
would have gotten exactly the same p value had we used the t statistic as
our test statistic.

Exercise 4.11. Use the Monte Carlo approach to rearrangements to test
the hypothesis that McGill’s hockey team is superior to your school’s.

Exercise 4.12. Compare the 90% confidence intervals for the variance of
the population from which the following sample of billing data was taken
for a) the original primitive bootstrap, b) the parametric bootstrap, assum-
ing the billing data are normally distributed.
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Hospital Billing Data
4181, 2880, 5670, 11620, 8660, 6010, 11620, 8600, 12860, 21420,
5510, 12270, 6500, 16500, 4930, 10650, 16310, 15730, 4610, 86260,
65220, 3820, 34040, 91270, 51450, 16010, 6010, 15640, 49170,
62200, 62640, 5880, 2700, 4900, 55820, 9960, 28130, 34350, 4120,
61340, 24220, 31530, 3890, 49410, 2820, 58850, 4100, 3020, 5280,
3160, 64710, 25070

4.2.4. Two-Sample t-Test
For the same reasons that Student’s t was an excellent choice in the one-
sample case, it is recommended for comparing samples of continuous data
from two populations, providing that the only difference between the two
is in their mean value, that is, the distribution of one is merely shifted
with respect to the other so that F1[x] = F2[x - D]. The test statistic is 

, where ŝ is an estimate of the standard error of the numerator:

Note that the square of the t statistic is the ratio of the variance between
the samples from your school and McGill to the variance within these
samples.

Exercise 4.13. Basing your decision on the point totals, use Student’s t
to test the hypothesis that McGill’s hockey team is superior to your
school’s. Is this a one-sided or a two-sided test? (This time when you use
DDXL Hypothesis Tests, select “2 Var t Test.”)

4.3. WHICH TEST SHOULD WE USE?
Four different tests were used for our two-population comparisons. Two
of these were parametric tests that obtained their p values by referring to
parametric distributions such as the binomial and Student’s t. Two were
resampling methods—bootstrap and permutation test—that obtained their
p values by sampling repeatedly from the data at hand.

In some cases, the choice of test is predetermined, for example, when
the observations take or can be reduced to those of a binomial distribu-
tion. In other instances, we need to look more deeply into the conse-
quences of our choice. In particular, we need to consider the assumptions

ŝ
X X n X X n

n n
j j=
-( ) -( ) + -( ) -( )

+ -
ÂÂ 1 1

2
1 2 2

2
2

1 2

1 1
2

X X
s

1 2.

ˆ
-

CHAPTER 4 TESTING HYPOTHESES 97



under which the test is valid, the effect of violations of these assumptions,
and the Type I and Type II errors associated with each test.

4.3.1. p Values and Significance Levels
In the preceding sections we have referred several times to p values and
significance levels. We have used both in helping us to make a decision
whether to accept or reject a hypothesis and, in consequence, to take a
course of action that might result in gains or losses.

To see the distinction between the two concepts, please go through the
following steps:

1. Use BoxSampler to generate a sample of size 10 from a Normal Distri-
bution with mean 0.5 and variance 1.

2. Use this sample and the t-test to test the hypothesis that the mean of
the population from which this sample was drawn was 0 (not 0.5).
Write down the value of the t statistic and of the p value.

3. Repeat Step 1.

4. Repeat Step 2.

The composition of the two samples varies, the value of the t statistic
varies, the p values vary, and the boundaries of the confidence interval
vary. What remains unchanged is the significance level of 100% - 95% = 5%
that is used to make decisions.

You aren’t confined to a 5% significance level. In clinical trials of drug
effectiveness, one might use a significance level of 10% in pilot studies but
would probably insist on a significance level of 1% before investing large
amounts of money in further development.

In summary, p values vary from sample to sample, whereas significance
levels are fixed.

Significance levels establish limits on the overall frequency of Type I
errors. The significance levels and confidence bounds of parametric and
permutation tests are exact only if all the assumptions that underlie these
tests are satisfied. Even when the assumptions that underlie the bootstrap
are satisfied, the claimed significance levels and confidence bounds of the
bootstrap are only approximations. The greater the number of observa-
tions in the original sample, the better this approximation will be.

4.3.2. Test Assumptions
Virtually all statistical procedures rely on the assumption that our observa-
tions are independent of one another. When this assumption fails, the
computed p values may be far from accurate, and a specific significance
level cannot be guaranteed.
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All statistical procedures require that at least one of the following suc-
cessively stronger assumptions be satisfied under the hypothesis of no dif-
ferences among the populations from which the samples are drawn:

1. The observations all come from distributions that have the same value
of the parameter of interest.

2. The observations are exchangeable, that is, each rearrangement of labels
is equally likely.

3. The observations are identically distributed and come from a distribu-
tion of known form.

The first assumption is the weakest. If this assumption is true, a non-
parametric bootstrap test1 will provide an exact significance level with very
large samples. The observations may come from different distributions,
providing that they all have the same parameter of interest. In particular,
the nonparametric bootstrap can be used to test whether the expected
results are the same for two groups even if the observations in one of the
groups are more variable than they are in the other.2

If the second assumption is true, the first assumption is also true. If the
second assumption is true, a permutation test will provide exact signifi-
cance levels even for very small samples.

The third assumption is the strongest assumption. If it is true, the first
two assumptions are also true. This assumption must be true for a para-
metric test to provide an exact significance level.

An immediate consequence is that if observations come from a multi-
parameter distribution such as the normal, then all parameters, not just the
one under test, must be the same for all observations under the null
hypothesis. For example, a t-test comparing the means of two populations
requires that the variances of the two populations be the same.

4.3.3. Robustness
When a test provides almost exact significance levels despite a violation of
the underlying assumptions, we say that it is robust. Clearly, the nonpara-
metric bootstrap is more robust than the parametric because it has fewer
assumptions. Still, when the number of observations is small, the paramet-
ric bootstrap, which makes more effective use of the data, will be prefer-
able, providing enough is known about the shape of the distribution from
which the observations are taken.

CHAPTER 4 TESTING HYPOTHESES 99

1 Any bootstrap but the parametric bootstrap.
2 We need to modify our testing procedure if we suspect this to be the case; see Chapter 8.



When the variances of the populations from which the observations are
drawn are not the same, the significance level of the bootstrap is not
affected. Bootstrap samples are drawn separately from each population.
Small differences in the variances of two populations will leave the signifi-
cance levels of permutation tests relatively unaffected, but they will no
longer be exact. Student’s t should not be used when there are clear dif-
ferences in the variances of the two groups.

On the other hand, Student’s t is the exception to the rule that para-
metric tests should only be used when the distribution of the underlying
observations is known. Student’s t tests for differences between means,
and means, as we’ve already noted, tend to be normally distributed even
when the observations they summarize are not.

4.3.4. Power of a Test Procedure
Statisticians call the probability of rejecting the null hypothesis when an
alternative hypothesis is true the power of the test. If we were testing a
food additive for possible carcinogenic (cancer producing) effects, this
would be the probability of detecting a carcinogenic effect. The power of
a test equals one minus the probability of making a Type II error. The
greater the power, the smaller the Type II error, the better off we are.

Power depends on all of the following:

1. The true value of the parameter being tested—the greater the gap
between our primary hypothesis and the true value, the greater the
power will be. In our example of a carcinogenic substance, the power
of the test would depend on, whether the substance was a strong or a
weak carcinogen and whether its effects were readily detectable.

2. The significance level—the higher the significance level (10% rather
than 5%), the larger the probability of making a Type I error we are
willing to accept, and the greater the power will be. In our example,
we would probably insist on a significance level of 1%.

3. The sample size—the larger the sample, the greater the power will be.
In our example of a carcinogenic substance, the regulatory commission
(the FDA in the United States) would probably insist on a power of
80%. We would then have to increase our sample size in order to meet
their specifications.

4. The method used for testing. Obviously, we want to use the most pow-
erful possible method.

Exercise 4.14. To test the hypothesis that consumers can’t tell your cola
from Coke, you administer both drinks in a blind tasting to 10 people
selected at random. A) To ensure that the probability of a Type I error is
just slightly more than 5%, how many people should correctly identify the
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glass of Coke before you reject this hypothesis? B) What is the power of
this test if the probability of an individual correctly identifying Coke is
75%?

Exercise 4.15. What is the power of the test in Exercise 4.14 if the prob-
ability of an individual correctly identifying Coke is 90%?

Exercise 4.16. If you test 20 people rather than 10, what will be the
power of a test at the 5% significance level if the probability of correctly
identifying Coke is 75%?

Exercise 4.17. Physicians evaluate diagnostic procedures on the basis of
their “sensitivity” and “selectivity.”

Sensitivity is defined as the percentage of diseased individuals that are
correctly diagnosed as such. Is sensitivity related to significance level and
power? How?

Selectivity is defined as the percentage of those diagnosed as 
suffering from a given disease that actually have the disease. Can 
selectivity be related to the concepts of significance level and power? If so,
how?

Exercise 4.18. Suppose we wish to test the hypothesis that a new vaccine
will be more effective than the old vaccine in preventing infectious pneu-
monia. We decide to inject some 1000 patients with the old vaccine and
1000 with the new and follow them for one year. Can we guarantee the
power of the resulting hypothesis test?

Exercise 4.19. Show that the power of a test can be compared to the
power of an optical lens in at least one respect.

4.3.5. Testing for Correlation
To see how we would go about finding the most powerful test in a spe-
cific case, consider the problem of deciding whether two variables are cor-
related. Let’s take another look at the data from my sixth-grade classroom.
The arm span and height of the five shortest students in my sixth grade
class are (139, 137), (140, 138.5), (141, 140), (142.5, 141), (143.5,
142). Both arm spans and heights are in increasing order. Is this just coin-
cidence? Or is there a causal relationship between them or between them
and a third hidden variable? What is the probability that an event like this
could happen by chance alone?
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The test statistic of choice is the Pitman correlation, , where 

(ak, hk) denotes the pair of observations made on the kth individual. To
prove to your own satisfaction that S will have its maximum when both
arm spans and heights are in increasing order, imagine that the set of arm
spans {ak} denotes the widths and {hk} the heights of a set of rectangles.
The area inside the rectangles, S, will be at its maximum when the smallest
width is paired with the smallest height, and so forth. If your intuition is
more geometric than algebraic, prove this result by sketching the rectan-
gles on a piece of graph paper.

We could list all possible permutations of both arm span and height
along with the value of S, but this won’t be necessary. We can get exactly
the same result if we fix the order of one of the variables, the height, for
example, and look at the 5! = 120 ways in which we could rearrange the
arm span readings:

(140, 137) (139, 138.5) (141, 140) (142.5, 141) (143.5, 142)

(141, 137) (140, 138.5) (139, 140) (142.5, 141) (143.5, 142)

and so forth.
Obviously, the arrangement we started with is the most extreme, occur-

ring exactly one time in 120 by chance alone. Applying this same test to
all 22 pairs of observations, we find the odds are less than 1 in a million
that what we observed occurred by chance alone and conclude that arm
span and height are directly related.

To perform a Monte Carlo estimate of the p values, we proceed as in
Section 4.2.3 with two modifications. We begn by outlining the columns
that we wish to shuffle. But when we complete the Matric Shuffle form,
we specify “Shuffle within Columns” as shown in Fig. 4.4. And we
compute Excel’s Correl() function repeatedly.

Note that we would get exactly the same p value if we used as our test 

statistic the Pearson correlation . This is 

because the variances of a and h are left unchanged by rearrangements. A
rearrangement that has a large value of S will have a large value of r and
vice versa.

Exercise 4.20. The correlation between the daily temperatures in Cairns
and Brisbane is 0.29 and between Cairns and Sydney is 0.52. Or should
that be the other way around?

r = [ ] [ ]
=
Âa h Var a Var hi i
i

n

*
1

S a hi i
i

n

=
=
Â

1
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Exercise 4.21. Do DDT residues have a deleterious effect on the thick-
ness of a cormorant’s eggshell? (Is this a one-sided or a two-sided test?)

DDT residue in yolk (ppm) 65 98 117 122 393

Thickness of shell (mm) .52 .53 .49 .49 .37

Exercise 4.22. Is there a statistically significant correlation between the
LSAT score and the subsequent GPA in law school?

Exercise 4.23. If we find that there is a statistically significant correlation
between the LSAT score and the subsequent GPA, does this mean the
LSAT score of a prospective law student will be a good predictor of that
student’s subsequent GPA?
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4.4. SUMMARY AND REVIEW
In this chapter, we derived permutation, parametric, and bootstrap tests of
hypothesis for a single sample, for comparing two samples, and for bivari-
ate correlation. We showed how to improve the accuracy and precision of
bootstrap confidence intervals. We explored the relationships and distinc-
tions among p values, significance levels, alternative hypotheses, and
sample sizes. And we provided some initial guidelines to use in the selec-
tion of the appropriate test.

Exercise 4.24. Make a list of all the italicized terms in this chapter.
Provide a definition for each one, along with an example.

Exercise 4.25. Some authorities have suggested that when we estimate a
p value via a Monte Carlo as in Section 4.2.3 we should include the origi-
nal observations as one of the rearrangements. Instead of reporting the p
value as cnt/N, we would report it as (cnt + 1)/(N + 1). Explain why this
would give a false impression. (Hint: Reread Chapter 2 if necessary.)

Exercise 4.26. Efron and Tibshirani (1993) report the survival times in
days for a sample of 16 mice undergoing a surgical procedure. The mice
were randomly divided into two groups. The following survival times in
days were recorded for a group of seven mice that received a treatment
expected to prolong their survival:

• 94,197,16,38,99,141,23

The second group of nine mice underwent surgery without the treat-
ment and had these survival times in days:

• 52,104,146,10,51,30,40,27,46

Provide a 75% confidence interval for the difference in mean survival
days for the sampled population based on 1000 bootstrap samples.

Exercise 4.27. Which test would you use for a comparison of the follow-
ing treated and control samples?

control = 4,6,3,4,7,6

treated = 14,6,3,12,7,15.
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SUPPOSE YOU WERE A CONSULTING STATISTICIAN1 and were given a data 
set to analyze. What is the first question you would ask? “What statistic
should I use?” No, your first question always should be, “How were these
data collected?”

Experience teaches us that garbage in, garbage out or GIGO. To apply
statistical methods, you need to be sure that samples have been drawn at
random from the population(s) you want represented and are representa-
tive of that population. You need to be sure that observations are indepen-
dent of one another and that outcomes have not been influenced by the
actions of the investigator or survey taker.

Many times people who consult statisticians don’t know the details of
the data collection process, or they do know and look guilty and embar-
rassed when asked. All too often, you’ll find yourself throwing your hands
in the air and saying, “If only you’d come to me to design your experi-
ment in the first place.”

The purpose of this chapter is to take you step by step through the
design of an experiment and a survey. You’ll learn the many ways in which
an experiment can go wrong. And you’ll learn the right things to do to
ensure that your own efforts are successful.

Chapter 5

Designing an Experiment 
or Survey

Introduction to Statistics Through Resampling Methods & Microsoft Office Excel®, by Phillip I. Good
Copyright © 2005 John Wiley & Sons, Inc.

1 The idea of having a career as a consulting statistician may strike you as laughable or even
distasteful. I once had a student who said he’d rather eat worms and die. Suppose then that
you’ve eaten worms and died, only to wake to discover that reincarnation is real and that to
expiate your sins in the previous life you’ve been reborn as a consulting statistician. I’m sure
that’s what must have happened in my case.



5.1. THE HAWTHORNE EFFECT
The original objective of the industrial engineers at the Hawthorne plant
of Western Electric was to see whether a few relatively inexpensive
improvements would increase workers’ productivity. They painted the
walls green, and productivity went up. They hung posters, and productiv-
ity went up. Then, just to prove how important bright paint and posters
were to productivity, they removed the posters and repainted the walls a
dull gray, only to find that, once again, productivity went up!

Simply put, these industrial engineers had discovered that the mere act
of paying attention to a person modifies his behavior. (Note: The same is
true for animals.)

You’ve probably noticed that you respond similarly to attention from
others, though not always positively. Taking a test under the watchful eye
of an instructor is quite different from working out a problem set in the
privacy of your room.

Physicians and witch doctors soon learn that merely giving a person a
pill (any pill) or dancing a dance often results in a cure. This is called the
placebo effect. If patients think they are going to get better, they do get
better. Thus regulatory agencies insist that, before they approve a new
drug, it be tested side by side with a similar looking, similar tasting
placebo. If the new drug is to be taken twice a day in tablet form, then the
placebo must also be given twice a day, also as a tablet, and not as a liquid
or an injection. And, most important, the experimental subject should not
be aware of which treatment she is receiving. Studies in which the treat-
ment is concealed from the subject are known as single-blind studies.

The doctor’s attitude is as important as the treatment. If part of the
dance is omitted—a failure to shake a rattle, why bother if the patient is
going to die anyway—the patient may react differently. Thus the agencies
responsible for regulating drugs and medical devices (in the United States
this would be the FDA) now also insist that experiments be double blind.
Neither the patient nor the doctor (or whoever administers the pill to the
patient) should know whether the pill that is given the patient is an active
drug or a placebo. If the patient searches the doctor’s face for clues—
Will this experimental pill really help me?—she’ll get the same response
whether she is in the treatment group or is one of the controls.

Note: The double-blind principle also applies to experimental animals.
Dogs and primates are particularly sensitive to their handlers’ attitudes.

5.1.1. Crafting an Experiment
In the very first set of clinical data that was brought to me for statistical
analysis, a young surgeon described the problems he was having with his
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chief of surgery. “I’ve developed a new method for giving arteriograms
that I feel can cut down on the necessity for repeated amputations. But
my chief will only let me try out the technique on patients who he feels
are hopeless. Will this affect my results?” It would, and it did. Patients
examined by the new method had a very poor recovery rate. But, of
course, the only patients who’d been examined by the new method were
those with a poor prognosis. The young surgeon realized that he would
not be able to test his theory until he was able to assign patients to treat-
ment at random.

Not incidentally, it took us three more tries until we got this particular
experiment right. In our next attempt, the chief of surgery—Mark Craig
of St. Eligius in Boston—announced that he would do the “random”
assignments. He finally was persuaded to let me make the assignment by
using a table of random numbers. But then he announced that he, and
not the younger surgeon, would perform the operations on the patients
examined by the traditional method to make sure “they were done right.”
Of course, this turned a comparison of methods into a comparison of sur-
geons and intent.

In the end, we were able to create the ideal “double-blind” study: The
young surgeon performed all the operations, but the incision points were
determined by his chief after examining one or the other of the two types
of arteriogram.

Exercise 5.1. Each of the following studies is fatally flawed. Can you tell
what the problem is in each instance and, as important, why it is a
problem?

1. Class action. Larry the Lawyer was barely paying his rent when he got
the bright idea of looking through the county-by-county leukemia rates
for our state. He called me a week later and asked what I thought of
the leukemia rate in Kay County. I gave a low whistle. “Awfully high,”
I said.

The next time I talked to Larry, he seemed happy and prosperous.
He explained that he’d gone to Kay County once he’d learned that the
principal employer in that area was a multinational chemical company.
He’d visited all the families whose kids had been diagnosed with
leukemia and signed them up for a class action suit. The company 
had quickly settled out of court when they looked at the figures.

“How’d you find out about Kay County?” I asked.
“Easy, I just ordered all the counties in the state by their leukemia

rates, and Kay came out on top.”

2. Controls. Donald routinely tested new drugs for toxicity by injecting
them in mice. In each case, he’d take five animals from a cage and
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inject them with the drug. To be on the safe side, he’d take the next
five animals from the cage, inject them with a saline solution, and use
them for comparison purposes.

3. Survey. Reasoning, correctly, that he’d find more students home at 
dinnertime, Tom brought a set of survey forms back to his fraternity
house and interviewed his frat brothers one by one at the dinner table.

4. Treatment Allocation. Fully aware of the influence that a physician’s
attitude could have on a patient’s recovery, Betty, a biostatistician, pro-
vided the investigators in a recent clinical trial with bottles of tablets
that were labeled only A or B.

5. Clinical Trials. Before a new drug can be marketed, it must go through
a succession of clinical trials. The first set of trials (phase I) is used to
establish the maximum tolerated dose. They are usually limited to 25
or so test subjects who will be observed for periods of several hours to
several weeks. The second set of trials (phase II) is used to establish the
minimum effective dose; they also are limited in duration and in the
number of subjects involved. Only in phase III are the trials expanded
to several hundred test subjects who will be followed over a period of
months or even years. Up until the 1990s, only males were used as 
test subjects, in order to spare women the possibility of unnecessary
suffering.

6. Comparison. Contrary to what one would expect from the advances in
medical care, there were 2.1 million deaths from all causes in the U.S.
in 1985, compared to 1.7 million in 1960.

7. Survey. The Federal Trade Commission surveyed former correspon-
dence school students to see how they felt about the courses they had
taken some two to five years earlier.2 The survey was accompanied by 
a form letter signed by an FTC attorney that began, “The Bureau of
Consumer Protection is gathering information from those who enrolled
in . . . to determine if any action is warranted.” Questions were multiple
choice and did not include options for “I don’t know” or “I don’t
recall.”

5.2. DESIGNING AN EXPERIMENT OR SURVEY
Before you complete a single data collection form:

1. Set forth your objectives and the use you plan to make of your
research.

2. Define the population(s) to which you will apply the results of your
analysis.

3. List all possible sources of variation.
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4. Decide how you will cope with each source. Describe what you will
measure and how you will measure it. Define the experimental unit and
all end points.

5. Formulate your hypothesis and all of the associated alternatives. Define
your end points. List possible experimental findings, along with the
conclusions you would draw and the actions you would take for each
of the possible results.

6. Describe in detail how you intend to draw a representative random
sample from the population.

7. Describe how you will ensure the independence of your observations.

5.2.1. Objectives
In my experience as a statistician, the people who come to consult me
before they do an experiment (an all-too-small minority of my clients)
aren’t always clear about their objectives. I advise them to start with their
reports, to write down what they would most like to see in print. For
example,

Fifteen thousand of 17,500 surveys were completed and
returned. Over half of the respondents were between the ages
of 47 and 56. Thirty-six percent (36%) indicated that they were
currently eligible or would be eligible for retirement in the next
three years. However, only 25% indicated they intended to
retire in that time. Texas can anticipate some 5000 retirees in
the next three years.

or

743 patients self-administered our psyllium preparation twice a
day over a three-month period. Changes in the Klozner–
Murphy self-satisfaction scale over the course of treatment were
compared with those of 722 patients who self-administered an
equally foul-tasting but harmless preparation over the same
time period.

All patients in the study reported an increase in self-satisfaction,
but the scores of those taking our preparation increased an
average of 2.3 ± 0.5 points more than those in the control
group.

Adverse effects included. . . .

If taken as directed by a physician, we can expect those diag-
nosed with. . . .
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I have my clients write in exact numerical values for the anticipated 
outcomes—their best guesses, as these will be needed when determining
sample size. My clients go over their reports several times to ensure
they’ve included all end points and as many potential discoveries as they
can—“Only 25% indicated an intent to retire in that time.” Once the
report is fleshed out completely, they know what data need to be collected
and do not waste their time and their company’s time on unnecessary or
redundant effort.

Exercise 5.2. Throughout this chapter, you’ll work on the design of a
hypothetical experiment or survey. If you are already well along in your
studies, it could be an actual one! Start now by writing the results section.

5.2.2. Sample From the Right Population
Be sure you will be sampling from the population of interest as a whole
rather than from an unrepresentative subset of that population. The most
famous blunder along these lines was basing the forecast of Dewey over
Truman in the 1948 U.S. presidential election on a telephone survey:
Those who owned a telephone and responded to the survey favored
Dewey; those who voted did not.

An economic study may be flawed because we have overlooked the
homeless. This was among the principal arguments the cities of New York
and Los Angeles advanced against the use of the 1990 and 2000 census to
determine the basis for awarding monies to cities. See City of New York v.
Dept of Commerce.3

An astrophysical study was flawed because of overlooking galaxies whose
central surface brightness was very low. And the FDA’s former policy of
permitting clinical trials to be limited to men (see Exercise 5.1, examples)
was just plain foolish.

Plaguing many surveys are the uncooperative and the nonresponder.
Invariably, follow-up surveys of these groups show substantial differences
from those who responded readily the first time around. These follow-up
surveys aren’t inexpensive—compare the cost of mailing out a survey to
telephoning or making face-to-face contact with a nonresponder. But if
one doesn’t make these calls, one may get a completely unrealistic picture
of how the population as a whole would respond.

Exercise 5.3. You be the judge. In each of the following cases, how
would you rule?
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A. The trial of People v. Sirhan4 followed the assassination of presidential
candidate Robert Kennedy. The defense appealed the guilty verdict,
alleging that the jury was a nonrepresentative sample and offering anec-
dotal evidence based on the population of the northern United States.
The prosecution said, so what, our jury was representative of Los
Angeles where the trial was held. How would you rule? Note that the
Sixth Amendment to the Constitution of the United States provides
that

A criminal defendant is entitled to a jury drawn from a jury panel
which includes jurors residing in the geographic area where the
alleged crime occurred.

B. In People v. Harris,5 a survey of trial court jury panels provided by the
defense showed a significant disparity from census figures. The prosecu-
tion contended that the survey was too limited, being restricted to the
Superior Courts in a single district, rather than being county wide.
How would you rule?

C. Amstar Corporation claimed that “Domino’s Pizza” was too easily con-
fused with its own use of the trademark “Domino” for sugar.6 Amstar
conducted and offered in evidence a survey of heads of households in
ten cities. Domino objected to this survey, pointing out that it had no
stores or restaurants in eight of these cities and in the remaining two
their outlets had been open less than three months. Domino provided
a survey it had conducted in its pizza parlors, and Amstar objected.
How would you rule?

Exercise 5.4. Describe the population from which you plan to draw a
sample in your hypothetical experiment. Is this the same population you
would extend the conclusions to in your report?

The Drunk and The Lamppost

There’s an old joke dating back to at least the turn of the 
previous century about the drunk whom the police officer
found searching for his wallet under the lamppost. The police-
man offers to help and after searching on hands and knees for
fifteen minutes without success asks the inebriated gentleman

CHAPTER 5 DESIGNING AN EXPERIMENT OR SURVEY 111

4 7 Cal.3d 710, 102 Cal. Rptr.385 (1972), cert. denied, 410 U.S. 947.
5 36 Cal.3d 36, 201 Cal. Rptr 782 (1984), cert. denied 469 U.S. 965, appeal to remand 236
Cal. Rptr 680, 191 Cal. App. 3d 819, appeal after remand, 236 Cal. Rptr 563, 217 Cal.
App. 3d 1332.
6 Amstar Corp. v. Domino’s Pizza, Inc., 205 U.S.P.Q 128 (N.D. Ga. 1979), rev’d, 615 F. 2d
252 (5th Cir. 1980).



just exactly where he lost his wallet. The drunk points to the
opposite end of the block. “Then why were you searching over
here?!” the policeman asks.

“The light’s better.”
It’s amazing how often measurements are made because they

are convenient (inexpensive and/or quick to make) rather than
because they are directly related to the object of the investiga-
tion. Your decisions as to what to measure and how to measure
it require as much or more thought as any other aspect of your
investigation.

5.2.3. Coping with Variation
As noted in the very first chapter of this text, you should begin any inves-
tigation where variation may play a role by listing all possible sources of
variation—in the environment, in the observer, in the observed, and in the
measuring device. Consequently, you need to have a thorough under-
standing of the domain—biological, psychological, or seismological—in
which the inquiry is set.

Will something as simple as the time of day affect results? Body temper-
ature and the incidence of mitosis both depend on the time of day. Retail
sales and the volume of mail both depend on the day of the week. In
studies of primates (including you) and hunters (tigers, mountain lions,
domestic cats, dogs, wolves, and so on) the sex of the observer will make
a difference.

Statisticians have found four ways for coping with individual-to-
individual and observer-to-observer variation:

1. Controlling. Making the environment for the study—the subjects, the
manner in which the treatment is administered, the manner in which
the observations are obtained, the apparatus used to make the measure-
ments, and the criteria for interpretation—as uniform and homoge-
neous as possible.

2. Blocking. A clinician might stratify the population into subgroups based
on such factors as age, sex, race, and the severity of the condition and
to restrict subsequent comparisons to individuals who belong to the
same subgroup. An agronomist would want to stratify on the basis of
soil composition and environment.

3. Measuring. Some variables such as cholesterol level or the percentage
of CO2 in the atmosphere can take any of a broad range of values and
don’t lend themselves to blocking. As we show in Chapter 6, statisti-
cians have methods for correcting for the values taken by these 
covariates.
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4. Randomizing. Randomly assign patients to treatment within each block
or subgroup so that the innumerable factors that can be neither con-
trolled nor observed directly are as likely to influence the outcome of
one treatment as another.

Exercise 5.5. List all possible sources of variation for your hypothetical
experiment and describe how you will cope with each one.

5.2.4. Matched Pairs
One of the best ways to eliminate a source of variation and the errors in
interpretation associated with it is through the use of matched pairs. Each
subject in one group is matched as closely as possible by a subject in the
treatment group. If a 45-year-old black male hypertensive is given a
blood-pressure lowering pill, then we give a second similarly built 45-year-
old black male hypertensive a placebo.

Consider the case of a fast-food chain that is interested in assessing the
effect of the introduction of a new sandwich on overall sales. To do this
experiment, they designate a set of outlets in different areas—two in the
inner city, two in the suburbs, two in small towns, and two located along
major highways. A further matching criterion is that the overall sales for
the members of each pair before the start of the experiment were approxi-
mately the same for the months of January through March. During the
month of April, the new sandwich is put on sale at one of each pair of
outlets. At the end of the month, the results are recorded for each
matched pair of outlets.

To analyze this data, we consider the 28 possible rearrangements that
result from the possible exchanges of labels within each matched pair of
observations. We proceed as in Section 4.3.5, only we select “Shuffle
within Rows” from the Matrix Shuffle form.

Exercise 5.6. In Exercise 5.5, is the correct p value 0.98, 0.02, or 0.04?

Exercise 5.7. Did the increased sales for the new menu justify the
increased cost of $1200 per location?
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TABLE 5.1

1 2 3 4 5 6 7 8

New Menu 48722 28965 36581 40543 55423 38555 31778 45643

Standard 46555 28293 37453 38324 54989 35687 32000 43289



5.2.5. The Experimental Unit
A scientist repeatedly subjected a mouse named Harold to severe stress.
She made a series of physiological measurements on Harold, recording
blood pressure, cholesterol levels, and white blood cell counts both before
and after stress was applied for a total of 24 observations. What was the
sample size?

Another experimenter administered a known mutagen—a substance that
induces mutations—into the diet of a pregnant rat. When the rat gave
birth, the experimenter took a series of tissue samples from each of the
seven offspring, two from each of eight body regions. What was the
sample size?

In each of the preceding examples, the sample size was one. In the first
example, the sole experimental unit was Harold. In the second example,
the experimental unit was a single pregnant rat. Would stress have affected
a second mouse the same way? We don’t know. Would the mutagen have
caused similar damage to the offspring of a different rat? We don’t know.
We do know there is wide variation from individual to individual in their
responses to changes in the environment. With data from only a single
individual in hand, I’d be reluctant to draw any conclusions about the
population as a whole.

Exercise 5.8. Suppose we are testing the effect of a topical ointment on
pink eye. Is each eye a separate experimental unit, or each patient?

5.2.6. Formulate Your Hypotheses
In translating your study’s objectives into hypotheses that are testable by
statistical means, you need to satisfy all of the following:

• The hypothesis must be numeric in form and must concern the
value of some population parameter. Examples: More than 50% of
those registered to vote in the state of California prefer my candi-
date. The arithmetic average of errors in tax owed that are made
by U.S. taxpayers reporting $30,000 to $50,000 income is less
than $50. The addition of vitamin E to standard cell growth
medium will increase the life span of human diploid fibroblasts by
no less than 30 generations. Note in these examples that we’ve
also tried to specify the population from which samples are taken
as precisely as possible.

• There must be at least one meaningful numeric alternative to your
hypothesis.

• It must be possible to gather data to test your hypothesis.

The statement “Redheads are sexy” is not a testable hypothesis. Nor is
the statement “Everyone thinks redheads are sexy.” Can you explain why?
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The statement “At least 80% of Reed College students think redheads are
sexy” is a testable hypothesis.

You should also decide at the same time as you formulate your hypothe-
ses whether the alternatives of interest are one-sided or two-sided, ordered
or unordered.

Exercise 5.9. Are the following testable hypotheses? Why or why not?

a. A large meteor hitting the Earth would dramatically increase the per-
centage of hydrocarbons in the atmosphere.

b. Our candidate can be expected to receive votes in the coming election.

c. Intelligence depends more on one’s genes than on one’s environment.

5.2.7. What Are You Going to Measure?
To formulate a hypothesis that is testable by statistical means, you need
decide on the variables you plan to measure. Perhaps your original
hypothesis was that men are more intelligent than women. To put this in
numerical terms requires a scale by which intelligence may be measured.
Which of the many scales do you plan to use, and is it really relevant to
the form of intelligence you had in mind?

Be direct. To find out which drugs individuals use and in what combi-
nations, which method would yield more accurate data: a) a mail survey of
households, b) surveying customers as they step away from a pharmacy
counter, or c) accessing pharmacy records?

Clinical trials often make use of surrogate response variables that are less
costly or less time-consuming to measure than the actual variable of inter-
est. One of the earliest examples of the use of a surrogate variable was
when coal miners would take a canary with them into the mine to detect a
lack of oxygen well before the miners themselves fell unconscious. Today,
with improved technology, they would be able to measure the concentra-
tion of oxygen directly.

The presence of HIV often serves as a surrogate for the presence of
AIDS. But is HIV an appropriate surrogate? Many individuals have tested
positive for HIV who do not go on to develop AIDS.7 How shall we
measure the progress of arteriosclerosis? By cholesterol levels? Angiogra-
phy? Electrocardiogram? Or by cardiovascular mortality?

Exercise 5.10. Formulate your hypothesis and all of the associated alter-
natives for your hypothetical experiment. Decide on the variables you will

CHAPTER 5 DESIGNING AN EXPERIMENT OR SURVEY 115

7 A characteristic of most surrogates is that they are not one-to-one with the gold standard.



measure. List possible experimental findings, along with the conclusions
you would draw and the actions you would take for each possible
outcome. (A spreadsheet is helpful for this last.)

5.2.8. Random Representative Samples
Is randomization really necessary? Would it matter if you simply used the
first few animals you grabbed out of the cage as controls? Or if you did all
your control experiments in the morning and your innovative procedures
in the afternoon? Or let one of your assistants perform the standard proce-
dure while you performed and perfected the new technique?

A sample consisting of the first few animals to be removed from a cage
will not be random because, depending on how we grab, we are more
likely to select more active or more passive animals. Activity tends to be
associated with higher levels of corticosteroids, and corticosteroids are
associated with virtually every body function.

We’ve already discussed in Section 5.1.1 why a simple experiment can
go astray when we confound competing sources of variation such as the
time of day and the observer with the phenomenon that is our primary
interest. As we saw in the preceding section, we can block our experiment
and do the control and the innovative procedure both in the afternoon
and in the morning, but we should not do one at one time and one at the
other. Recommended in the present example would be to establish four
different blocks (you observe in the morning, you observe in the after-
noon, your assistant observes in the morning, your assistant observes in
the afternoon) and to replicate the experiment separately in each block.

Samples also are taken whenever records are audited. Periodically,
federal and state governments review the monetary claims made by 
physicians and health maintenance organizations (HMOs) for accuracy.
Examining each and every claim would be prohibitively expensive, so gov-
ernments limit their audits to a sample of claims. Any systematic method
of sampling, examining every 10th claim say, would fail to achieve the
desired objective. The HMO would soon learn to maintain its files in an
equally systematic manner, making sure that every 10th record was error-
and fraud free. The only way to ensure honesty by all parties submitting
claims is to let a sequence of random numbers determine which claims will
be examined.

The same reasoning applies when we perform a survey. Let us suppose
we’ve decided to subdivide (block) the population whose properties we
are investigating into strata—males, females, city dwellers, farmers—and 
to draw separate samples from each stratum. Ideally, we would assign a
random number to each member of the stratum and let a computer’s
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random number generator determine which members are to be included
in the sample.

By the way, if we don’t block our population, we run the risk of obtain-
ing a sample in which members of an important subgroup are absent or
underrepresented. Recall from Section 2.2.3, that a single jury (or sample)
may not be representative of the population as a whole. We can forestall
this happening by deliberately drawing samples from each important 
subgroup.8

Exercise 5.11. Suppose you were to conduct a long-term health survey of
our armed services personnel. What subgroups would you want to con-
sider? Why?

Exercise 5.12. Show that the size of each subsample need not be propor-
tional to its size in the population at large. For example, suppose your
objective was to estimate the median annual household income for a spe-
cific geographic area and you were to take separate samples of households
whose heads were male and female, respectively. Would it make sense to
take samples of the same size from each group?

5.2.9. Treatment Allocation
If the members of a sample taken from a stratum are to be exposed to dif-
fering test conditions or treatments, then we must make sure that treat-
ment allocation is random and that the allocation is concealed from both
the investigator and the experimental subjects insofar as this is possible.

Treatment allocation cannot be left up to the investigator because of the
obvious bias that would result. Having a third party label the treatments
(or the treated patients) with seemingly meaningless labels such as A or B
won’t work either. The investigator will soon start drawing conclusions—
not necessarily the correct ones—about which treatment the As received.
In clinical trials, sooner or later the code will need to be broken for a
patient who is exhibiting severe symptoms that require immediate treat-
ment. Breaking the code for one patient when the A/B method of treat-
ment allocation is used will mean the code has been broken for all
patients.

Similar objections can be made to any system of treatment allocation in
which subjects are assigned on a systematic basis to one treatment regimen
or the other. For example, injecting the first subject with the experimental
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vaccine, the next with saline, and so forth. The only safe system is one in
which the assignment is made on the basis of random numbers.

5.2.10. Choosing a Random Sample
My clients often provide me with a spreadsheet containing a list of claims
to be audited. Using Excel, I’ll insert a new column and type =RAND() in
the top cell. I’ll copy this cell down the column and then SORT the entire
worksheet on the basis of this column. (You’ll find the SORT command in
Excel’s DATA menu.) The final step is to use the top 10 entries or the top
100 or whatever sample size I’ve specified for my audit.

Exercise 5.13. Describe the method of sampling you will use in your
hypothetical experiment. If you already have the data, select the sample.

Exercise 5.14. Once again, you be the judge. The California Trial Jury
Selection and Management Act9 states that

It is the policy of the State of California that all persons
selected for jury service shall be selected at random from the
population of the area served by the court; that all qualified
persons have an equal opportunity, in accordance with this
chapter, to be considered for jury service in the state and an
obligation to serve as jurors when summoned for that purpose;
and that it is the responsibility of jury commissioners to
manage all jury systems in an efficient, equitable, and cost-
effective manner in accordance with this chapter.

In each of the following cases, decide whether this act has been complied
with.

1. A trial judge routinely excuses physicians from jury duty because of
their importance to the community.

2. Jury panels are selected from lists of drivers compiled by the depart-
ment of motor vehicles.10

3. A trial judge routinely excuses jurors not possessing sufficient knowl-
edge of English.11
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4. A trial judge routinely excuses the “less educated” (12 or fewer years of
formal education) or “blue-collar workers.”12

5. A trial judge routinely excuses anyone who requests to be excused.

6. Jury selection is usually a two- or three-stage process. At the first stage,
a panel is selected at random from the population. At the second stage,
jurors are selected from the panel and assigned to a courtroom. In
People v. Viscotti,13 the issue was whether the trial court erred in taking
the first 12 jurors from the panel rather than selecting 12 at random.
How would you rule?

7. A jury of 12 black males was empaneled in an area where blacks and
whites were present in equal numbers.

5.2.11. Ensuring that Your Observations Are Independent
Independence of the observations is essential to most statistical proce-
dures. When observations are related as in the analysis of multifactor
designs described in Chapter 6, it is essential that the residuals be inde-
pendent. Any kind of dependence, even if only partial, can make the
analysis suspect.

Too often, surveys take advantage of the cost savings that result from
naturally occurring groups such as work sites, schools, clinics, neighbor-
hoods, even entire towns or states. Not surprisingly, the observations
within such a group are correlated. Any group or cluster of individuals
who live, work, study, or pray together may fail to be representative for
any or all of the following reasons:

• Shared exposure to the same physical or social environment

• Self-selection in belonging to the group

• Sharing of behaviors, ideas, or diseases among members of the
group

Two events A and B are independent only if knowledge of B is NEVER
of value in predicting A. In statistics, two events or two observations are
said to be independent if knowledge of the outcome of the one tells you
nothing about the likelihood of the other. My knowledge of who won the
first race will not help me predict the winner of the second. On the other
hand, knowledge of the past performance of the horses in the second race
would be quite helpful.

The UCLA statistics professor who serves as consultant to the California
state lottery assures me that the winning numbers on successive days are
completely independent of one another. Despite the obvious, the second
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most common pick in the California lottery are the numbers that won the
previous day!

Pick two voters at random, and the knowledge of one person’s vote
won’t help me forecast the others. But if you tell me that the second
person is the spouse of the first, then there is at least a partial dependence.
(The two spouses may vote differently on specific occasions, but if one
generalizes to all spouses on all occasions, the dependence is obvious.)
The effect of such correlation must be accounted for by the use of the
appropriate statistical procedures.14

The price of Coca Cola stock tomorrow does depend upon the closing
price today. But the change in price between today and tomorrow’s
closing may well be independent of the change in price between yester-
day’s closing and today’s. When monitoring an assembly line or a measur-
ing instrument, it is the changes from hour to hour and day to day that
concern us. Change is expected and normal. It is the trends in these
changes that concern us as these may indicate an underlying mutual
dependence on some other hidden factors.

Exercise 5.15. Review Exercise 2.26.

5.3. HOW LARGE A SAMPLE?
Once we have mastered the technical details associated with making our
observations, we are ready to launch our experiment or survey, but for
one unanswered question: How large a sample should we take?

The effect of increasing sample size is best illustrated in the following
series of photographs copied from http://www.oztam.com.au/faq/
#erwin. The picture (below) is comprised of several hundred thousand
tiny dots (the population).
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Now suppose we were to take successive representative samples from this
population consisting of 250, 1000, and 2000 dots, respectively. They are
“area probability” samples of the original picture, because the dots are dis-
tributed in proportion to their distribution in the picture. If we think of
homes instead of dots, this is the sampling method used for most door-to-
door surveys.
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Having trouble recognizing the photo? Move back 30 inches or so from
the page. When your eye stops trying to read the dots, even the smallest
sample provides a recognizable picture. You would have trouble picking
this woman out of a group based on the 250-dot sample. But at 1000
dots, if you squint to read the pattern of light and dark, you might recog-
nize her. At 2000 dots, you see her more clearly—but the real improve-
ment is between 250 and 1000—an important point. In sampling, the
ability to see greater detail is a “squared function”—it takes four times as
large a sample to see twice the detail. This is the strength and weakness of
sample-based research. You can get the general picture cheap, but preci-
sion costs a bundle.

In our hypothetical experiment, we have a choice either of using a
sample of fixed size or of a sequential sampling method in which we
proceed in stages, deciding at each stage whether to terminate the experi-
ment and make a decision. For the balance of this chapter, we shall focus
on methods for determining a fixed sample size, merely indicating some of
the possibilities associated with sequential sampling.

5.3.1. Samples of Fixed Size
Not surprisingly, many of the factors that go into determining optimal
sample size are identical with those needed to determine the power of a
test (Section 4.3.4):

1. The true value of the parameter being tested. The greater the gap
between our primary hypothesis and the true value, the smaller the
sample needed to detect the gap.



2. The variation of the observations. The more variable the observations,
the more observations we will need to detect an effect of fixed size.

3. The significance level and the power. If we fix the power against a 
specific alternative, then working with a higher significance level 
(10% rather than 5%) will require fewer observations.

4. The relative costs of the observations and of the losses associated with
making Type I and Type II errors. If our measurements are expensive,
then to keep the overall cost of sampling under control, we may have
to accept the possibility of making Type I and Type II errors more fre-
quently.

5. The method used for testing. Obviously, we want to use the most pow-
erful possible method to reduce the number of observations.

The sample size that we determine by consideration of these factors is
the sample size we need to end the study with. We may need to take a
much larger sample to begin with in order to account for drop-outs and
withdrawals, animals that escape from their cages, get mislabeled or mis-
classified, and so forth. Retention is a particular problem in long-term
studies. In a follow-up survey conducted five years after the original, one
may be able to locate as few as 20% of the original participants.

We have a choice of methods for determining the appropriate sample
size. If we know how the observations are distributed, we should always
take advantage of our knowledge. If we don’t know the distribution
exactly, but the sample is large enough that we feel confident that the sta-
tistic we are interested in has almost a normal distribution, then we should
take advantage of this fact. As a method of last resort, we can run a simu-
lation or bootstrap.

In what follows, we consider each of these methods in turn.

Known Distribution. One instance in which the distribution of the
observations is always known is when there are only two possible out-
comes—success or failure, a vote for our candidate or a vote against.
Suppose we desire to cut down a stand of 500-year-old redwoods in order
to build and sell an expensive line of patio furniture. Unfortunately, the
stand is located on state property, but we know a politician who we feel
could be persuaded to help facilitate our purchase of the land. In fact, his
agent has provided us with a rate card.

The politician is up for reelection and believes that a series of TV and
radio advertisements purchased with our money could guarantee him a
victory. He claims that those advertisements would guarantee him 55% 
of the vote. Our own advisors say he’d be lucky to get 40% of the vote
without our ads and the best the TV exposure could do is give him
another 5%.
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We decide to take a poll. If it looks like only 40% of the voters favor the
candidate, we won’t give him a dime. If 46% or more of the voters already
favor him, we’ll pay to saturate the airwaves with his promises. We decide
we can risk making a Type I error 5% of the time and a Type II error at
most 10% of the time. That is, if p = 0.40, then the probability of reject-
ing the hypothesis that p = 0.40 should be no greater than 5%. And if 
p = 0.46, then the probability of rejecting the hypothesis that p = 0.40
should be at least 90%.

• To calculate the 95% percentile of the binomial distribution with
10 trials and p = 0.4, enter = BINOMDIST(k,10,0.4,1) in a
vacant cell and experiment with various values for k. What would
be a good starting value?

• 7 is the answer. Our rejection region will include not only 7 but
all more extreme values, 8, 9, and 10. To calculate the probability
of observing 7 or more successes for a binomial distribution with
10 trials and p = 0.4, enter = 1 - BINOMDIST(6,10,0.4,1).
0.05476; close enough to 5% given the small sample size.

Now let’s see what the Type II error would be:

• To calculate the probability of observing 6 or fewer successes for a
binomial distribution with 10 trials and p = 0.46, enter
BINOMDIST(6,10,0.46,1) or 0.8859388.

Much too large; let’s try a larger sample size to begin with, say 100.
Repeating the previous calculations, we find by trial and error that . . . wait
one minute . . . that could be as many as 50 or more calculations if I make
a dumb series of guesses. Is there a better way? Absolutely.

You will first need to install the Solver add-in. Although Solver is sup-
plied with Excel, it often needs to be installed separately. Pull down your
Tools menu and see whether “Goal Seeking” is one of the options. If not,
you’ll need to complete the following steps.

1. Click “start” and then select either “Settings” or “Control Panel”
depending on your version of Windows. In either case, from the
Control Panel select “Add or Remove Programs.”

2. Select “Microsoft Office Professional” from the resulting menu and
click on “Change.”

3. Select “Add or Remove Features.”

4. Select “Microsoft Excel for Windows,” “Add-ins,” and “Solver.”

Once Solver is installed, select “Goal Seeking” from the tools menu as
shown in Fig. 5.1.
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Next, complete the Goal Seek menu as shown in Fig. 5.2. Press OK.
Excel reports that it cannot find a solution but suggests 47.47 as a possi-
bility. To be on the conservative side, let us use a sample size of 48.

Warning: Excel’s Goal Seek procedure is not always successful. For, if
one starts with a guess of 40 in cell B1 instead of 0, Goal Seek fails to find
the answer.

Our next step is to determine the power of the test associated with the
new sample size of 100. 1 - BINOMDIST(48,100,0.46,1) = 0.6191224.
Not large enough.

Let’s try a sample size of 400. Trial and error and a occasional help
from Goal Seek yields a cutoff value of 175 successes, with a Type I error
of 0.057 and a Type II error of 0.19.

We’re getting close. Let’s try a sample size of 800. Trial and error yields
a cutoff value of 342 successes, with a Type I error of 0.052 and a Type
II error of 0.04, which is less than 10%.

A poll of 800 people will give me the results I need. But why pay for
that large a sample, when fewer observations will still result in the desired
Type I and Type II errors?
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Exercise 5.16. Find, to the nearest 20 observations, the smallest sample
size needed to yield a Type I error of 5% when p = 0.40 and a Type II
error of 10% when p = 0.46.

Exercise 5.17. A friend of ours has a “lucky” coin that seems to come 
up heads every time he flips it. We examine the coin and verify that one
side is marked tails. How many times should we flip the coin to test the
hypothesis that it is fair so that a) the probability of making a Type I error
is no greater than 10% and b) we have a probability of 80% of detecting a
weighted coin that will come up heads 70 times out of one hundred on
the average?

Almost Normal Data. As noted in Chapter 3, the mean of a sample will
often have an almost normal distribution similar to that depicted in Fig.
1.23 even when the individual observations come from some quite differ-
ent distribution. See, for example, Exercise 3.14.

In the previous section, we derived the ideal sample size more or less by
trial and error. We could proceed in much the same way with normally
distributed data, but there is a much better way. Recall that in Exercise
3.17 we showed that the variance of the mean of n observations each with
variance s2 was s2/n. If we know the cutoff value for testing the mean of
a normal distribution with variance 1, we can find the cutoff value and
subsequently the power of a test for the mean of a normal distribution
with any variance whatever.
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Let’s see how. Typing

• = NORMSINV(0.95)

we find that the 95th percentage point of an N(0,1) distribution is
1.644854

We illustrate this result in Fig. 5.3.
If the true mean is actually one standard deviation larger than 0, the

probability of observing a value less than or equal to 1.644853 is given by
1-NORMS(1.644853-1) = 0.74. We illustrate this result in Fig. 5.4.

We can use Exercise 3.12 to show that if each of n independent obser-
vations is normally distributed as N(0,1) then their mean is distributed as
N(0,1/n). Detecting a difference of 1 now becomes a task of detecting a
difference of ÷n standard deviation units.

• NORMSINV(0.10) = -1.2816

Thus we require a sample size n such that 1.644 - ÷n = -1.281552, or 
n = 9.

More often, we need to test against an alternative of fixed size. For, the
population mean is really equal to 10 units. Thus, to determine the
required sample size for testing, we would also need to know the popula-
tion variance or at least to have some estimate of what it is. If we have
taken a preliminary sample, then the variance of this sample s2 could serve
as an estimate of the unknown population variance s2.
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Let us suppose the sample variance is 25. The sample standard deviation
is 5, and we are testing for an estimated difference of 2 standard devia-
tions. At a significance level of 5%, we require a sample size n such that
1.644854 - ÷n*10/5 = -1.281552, or no more than 3 observations.

To generalize the preceding results, suppose that Ca is the cutoff value
for a test of significance at level a, and we want to have power b to detect
a difference of size d. Cb is the value of a N(0,1) distributed variable Z for
which P{Z > Cb} = b, and s is the standard deviation of the variable we
are measuring. Then ÷n = (Ca - Cb) s/d.

Exercise 5.18. How big a sample would you need to test the hypothesis
that the average sixth-grader is 150mm in height at a 5% significance level
so that the probability of detecting a true mean height of 160mm is 90%?

Exercise 5.19. When his results were not statistically significant at the
10% level, an experimenter reported that a “new experimental treatment
was ineffective.” What other possibility is there?

Bootstrap. If you have reason to believe that the distribution of the
sample statistic is not normal, for example, if you are testing hypotheses
regarding variances or ratios, the best approach to both power and sample
size determination is to bootstrap from the empirical distribution under
both the primary and the alternative hypothesis.

CHAPTER 5 DESIGNING AN EXPERIMENT OR SURVEY 127

–2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

normally distributed variable

pr
ob

ab
ili

ty
 d

en
si

ty

FIGURE 5.4 A cutoff value of 1.64 detects 36% of N(1,1) observations.



Recently, one of us was helping a medical device company design a
comparison trial of their equipment with that of several other companies.
They had plenty of information on their own equipment but could only
guess at the performance characteristics of their competitors. As they 
were going to have to buy, and then destroy, their competitors’ equipment
to perform the tests, they wanted to keep the sample size as small as 
possible.

Stress test scores took values from 0 to 5, with 5 being the best. The
idea was to take a sample of k units from each lot and reject if the mean
score was too small. To determine the appropriate cutoff value for each
prospective sample size, we took a series of simulated samples from the
empirical distribution for our client’s equipment. The individual frequen-
cies for this distribution were f0, f1, f2, f3, f4, and f5. We let the com-
puter choose a random number from 0 to 1. If this number was less than
f0, we set the simulated test score to 0. If the random number was greater
than f0 but less than f0 + f1, we set it to 1, and so forth. We did this k
times, recorded the mean, and then repeated the entire process. For k = 4,
95% of the time this mean was greater than 3. So 3 was our cutoff point
for k = 4.

Next, we guesstimated an empirical distribution for the competitor’s
product. We repeated the entire simulation using this guesstimated distrib-
ution. (Sometimes, you just have to reply on your best judgment.) For k =
4, 40% of the time the mean of our simulated samples of the competitors’
products was less than 3. Not good enough. We wanted a test our
product could pass and their products wouldn’t.

By trial and error, we finally came up with a sample size of 6 and a test
our product could pass 95% of the time and the competitors’ products
would fail at least 70% of the time. We were happy.

How many simulated samples n did we have to take each time? The
proportion of values that fall into the rejection region is a binomial
random variable with n trials and a probability b of success in each trial,
where b is the desired power of the test.

We used n = 100 until we were ready to fine-tune the sample size, when
we switched to n = 400.

Exercise 5.20. In preliminary trials of a new medical device, test results
of 7.0 were observed in 11 out of 12 cases and 3.3 in 1 out of 12 cases.
Industry guidelines specified that any population with a mean test result
greater than 5 would be acceptable. A worst-case or boundary-value sce-
nario would include one in which the test result was 7.0, 3/7th of the
time, 3.3, 3/7th of the time, and 4.1, 1/7th of the time.
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The statistical procedure with significance level 6% requires us to reject
if the sample mean of subsequent test results is less than 6. What sample
size is required to obtain a power of at least 80% for the worst-case 
scenario?

5.3.2. Sequential Sampling
The computational details of sequential sampling procedures are beyond
the scope of the present text. Still, realizing that many readers will go on
to design their own experiments and surveys, we devote the balance of
this chapter to outlining some of the possibilities.

Stein’s Two-Stage Sampling Procedure. Charles Stein’s two-stage sam-
pling procedure makes formal recognition of the need for some estimate
of variation before we can decide on an optimal sample size. The proce-
dure assumes that the test statistic will have an almost normal distribution.
We begin by taking a relatively small sample and use it and the procedures
of the preceding sections to estimate the optimal sample size.

If the estimated optimal sample size is less than or equal to the size of
the sample we’ve already taken, we stop; otherwise we will take the sug-
gested number of observations plus one.

Exercise 5.21. Apply Stein’s two-stage sampling procedure to the data of
Exercise 5.17. How many additional observations would we need to
detect an improvement in scores of 4 units 95% of the time?

Wald Sequential Sampling. When our experiments are destructive in
nature (as in testing condoms) or may have an adverse effect upon the
experimental subject (as in clinical trials), we would prefer not to delay
our decisions until some fixed sample size has been reached.

Figure 5.5 depicts a sequential trial of a new vaccine after eight patients
who had received either the vaccine or an innocuous saline solution had
come down with the disease. Each time a control patient came down with
the disease, the jagged line was extended to the right. Each time a patient
who had received the experimental vaccine came down with the disease,
the jagged line was extended upward one notch. The experiment will con-
tinue until either the jagged line crosses the lower boundary—in which
case we will stop the experiment, reject the null hypothesis, and immedi-
ately put the vaccine into production, or the jagged line crosses the upper
boundary—in which case we will stop the experiment, accept the null
hypothesis, and abandon further work with this vaccine. What Abraham
Wald [1945] showed in his pioneering research was that on the average
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the resulting sequential experiment would require many fewer observations
whether or not the vaccine was effective than would a comparable experi-
ment of fixed sample size.

Exercise 5.22. Suppose we were to take a series of observations and, after
each one, reject if the test statistic is greater than the 95th percentile of its
distribution under the null hypothesis. Show that the Type I error would
exceed 5% even if we only took two observations.

As Exercise 5.22 illustrates, simply performing a standard statistical test
after each new observation as if the sample size were fixed will lead to
inflated values of Type I error. The boundaries depicted in Fig. 5.3 were
obtained by using formulas specific to sequential design. Not surprisingly,
these formulas require us to know each and every one of the factors
required to determine the number of samples when an experiment is of
fixed size.

More recent developments include “group-sequential designs,” which
involve testing not after every observation, as in a fully sequential design,
but rather after groups of observations, e.g., after every 6 months in a
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clinical trial. The design and analysis of such experiments is best done 
with specialized software such as S+SeqTrial, from http://
www.insightful.com. For example, Fig. 5.6 is the main menu for
designing a trial to compare binomial proportions in a treatment and
control group, with the null hypothesis being p = 0.4 in both groups, and
the alternative hypothesis that p = 0.45 in the treatment group, using an
“O’Brien–Fleming” design, with a total of four analyses (three “interim
analyses” and a final analysis).

The resultant output (see sidebar) begins with the call to the “seqDe-
sign” function that you would use if working from the command line
rather than using the menu interface. The null hypothesis is that Theta
(the difference in proportions, e.g., survival probability, between the two
groups) is 0.0, and the alternative hypothesis is that Theta is at least 0.05.
The last section indicates the stopping rule, which is also shown in the
next plot. After 1565 observations (split roughly equally between the two
groups) we should analyze the interim results. At the first analysis, if the
treatment group has a survival probability that is 10% greater than the
control group, we stop early and reject the null hypothesis; if the treat-
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ment group is doing 5% worse, we also stop early, and accept the null
hypothesis (at this point it appears that our treatment is actually killing
people; there is little point in continuing the trial). Any ambiguous result,
in the middle, causes us to collect more data. At the second analysis time
the decision boundaries are narrower, with lower and upper boundaries 0%
and 5%; stop and declare success if the treatment group is doing 5%
better, stop and give up if the treatment group is doing at all worse. The
decision boundaries at the third analysis time are even narrower, and at
the final time (6260 total observations) they coincide; at this point we
make a decision one way or the other. For comparison, the sample size
and critical value for a fixed-sample trial is shown; this requires somewhat
less than 6000 subjects.
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*** Two-sample Binomial Proportions Trial ***

Call:

seqDesign(prob.model = "proportions", arms = 2,
null.hypothesis = 0.4, alt.hypothesis = 0.45, ratio 
= c(1., 1.), nbr.analyses = 4, test.type = "greater",
power = 0.975, alpha = 0.025, beta = 0.975, epsilon =
c(0., 1.), display.scale = seqScale(scaleType = "X"))

PROBABILITY MODEL and HYPOTHESES:

Two-arm study of binary response variable 
Theta is difference in probabilities (Treatment - 
Comparison)

One-sided hypothesis test of a greater alternative: 
Null hypothesis : Theta <= 0   (size  = 0.025)
Alternative hypothesis : Theta >= 0.05    (power = 
0.975)

[Emerson & Fleming (1989) symmetric test] 

STOPPING BOUNDARIES: Sample Mean scale 
a     d 

Time 1 (N= 1565.05) -0.0500 0.1000
Time 2 (N= 3130.09)  0.0000 0.0500
Time 3 (N= 4695.14)  0.0167 0.0333
Time 4 (N= 6260.18)  0.0250 0.0250

Figure 5.7 depicts the boundaries of a group-sequential trial. At each of
four analysis times, at each time a difference in proportions below the
lower boundary or above the upper boundary causes the trial to stop; any-
thing in the middle causes it to continue. For comparison, a fixed trial (in



which one only analyzes the data at the completion of the study) is
shown; this would require just under 6000 subjects for the same Type I
error and power.

The major benefit of sequential designs is that we may stop early if
results clearly favor one or the other hypothesis. For example, if the treat-
ment really is worse than the control, we are likely to hit one of the lower
boundaries early. If the treatment is much better than the control, we are
likely to hit an upper boundary early. Even if the true difference is right in
the middle between our two hypotheses, say that the treatment is 2.5%
better (when the alternative hypothesis is that it is 5% better), we may stop
early on occasion. Figure 5.8 shows the average sample size as a function
of Theta, the true difference in means. When Theta is less than 0% or
greater than 5%, we need about 4000 observations on average before
stopping. Even when the true difference is right in the middle, we stop
after about 5000 observations, on average. In contrast, the fixed-sample
design requires nearly 6000 observations for the same Type I error and
power.

Adaptive Sampling. The adaptive method of sequential sampling is used
primarily in clinical trials where the treatment or the condition being
treated presents substantial risks to the experimental subjects. Suppose, for

CHAPTER 5 DESIGNING AN EXPERIMENT OR SURVEY 133

–0.05

0.0

0.05

0.10

0 1000 2000 3000 4000 5000 6000

Sample Size

di
ffe

re
nc

e 
in

 p
ro

ba
bi

lit
ie

s
Design1
Fixed

FIGURE 5.7 Group-sequential decision boundaries.



example, 100 patients have been treated, 50 with the old drug and 50
with the new. If, on review of the results, it appears that the new experi-
mental treatment offers substantial benefits over the old, we might change
the proportions given each treatment, so that in the next group of 100
patients, just 25 randomly chosen patients receive the old drug and 75
receive the new.

5.4. META-ANALYSIS
Such is the uncertain nature of funding for scientific investigation that
experimenters often lack the means necessary to pursue a promising line of
research. A review of the literature in your chosen field is certain to turn
up several studies in which the results are inconclusive. An experiment or
survey has ended with results that are “almost” significant, say with p =
0.075 but not p = 0.049. The question arises whether one could combine
the results of several such studies, thereby obtaining, in effect, a larger
sample size and a greater likelihood of reaching a definitive conclusion.
The answer is yes, through a technique called meta-analysis.

Unfortunately, a complete description of this method is beyond the
scope of this text. There are some restrictions on meta-analysis, for
example, that the experiments whose p values are to be combined should
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be comparable in nature. Formulas and a set of Excel worksheets may 
be downloaded from http://www.ucalgary.ca/~steel/
procrastinus/meta/Meta%20Analysis%20-%20Mark%20IX.xls

Exercise 5.23. List all the respects in which you feel experiments ought
be comparable in order that their p-values should be combined in a 
meta-analysis.

5.5. SUMMARY AND REVIEW
In this chapter, you learned the principles underlying the design and
conduct of experiments and surveys. You learned how to cope with varia-
tion through controlling, blocking, measuring, or randomizing with
respect to all contributing factors. You learned the importance of giving a
precise, explicit formulation to your objectives and hypotheses. You
learned a variety of techniques to ensure that your samples will be both
random and representative of the population of interest. And you learned
a variety of methods for determining the appropriate sample size.

You also learned that there is much more to statistics than can be pre-
sented within the confines of a single introductory text.

Exercise 5.24. A highly virulent disease is known to affect one in 5000
people. A new vaccine promises to cut this rate in half. Suppose we were
to do an experiment in which we vaccinated a large number of people,
half with an ineffective saline solution and half with the new vaccine. How
many people would we need to vaccinate to ensure that the probability
was 80% of detecting a vaccine as effective as this one purported to be
while the risk of making a Type I error was no more than 5%? (Hint: See
Section 4.2.1.)

There was good news and bad news when one of us participated in just
such a series of clinical trials recently. The good news was that almost
none of the subjects—control or vaccine treated—came down with the
disease. The bad news was that with so few diseased individuals the trials
were inconclusive.

Exercise 5.25. To compare teaching methods, 20 school children were
randomly assigned to one of two groups. The following are the test
results:

conventional 85 79 80 70 61 85 98 80 86 75

new 90 98 73 74 84 81 98 90 82 88
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Are the two teaching methods equivalent in result?
What sample size would be required to detect an improvement in scores

of 5 units 90% of the time where our test is carried out at the 5% signifi-
cance level?

Exercise 5.26. To compare teaching methods, 10 school children were
first taught by conventional methods, tested, and then taught by an
entirely new approach. The following are the test results:

conventional 85 79 80 70 61 85 98 80 86 75

new 90 98 73 74 84 81 98 90 82 88

Are the two teaching methods equivalent in result?
What sample size would be required to detect an improvement in scores

of 5 units 90% of the time? Again, the significance level for the hypothesis
test is 5%.

Exercise 5.27. Make a list of all the italicized terms in this chapter.
Provide a definition for each one along with an example.
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IN THIS CHAPTER, YOU’LL LEARN HOW to analyze a variety of different types
of experimental data including changes measured in percentages, samples
drawn from more than two populations, categorical data presented in the
form of contingency tables, samples with unequal variances, and multiple
end points.

6.1. CHANGES MEASURED IN PERCENTAGES
In Chapter 5, we learned how we could eliminate one component of vari-
ation by using each subject as its own control. But what if we are measur-
ing weight gain or weight loss, where the changes, typically, are best
expressed as percentages rather than absolute values? A 250-pounder
might shed 20 pounds without anyone noticing; not so with a 125-
pounder.

The obvious solution is to work not with the before-after differences
but with the before/after ratios.

But what if the original observations are on growth processes—the size
of a tumor or the size of a bacterial colony—and vary by several orders of
magnitude? H. E. Renis of the Upjohn Company observed the following
vaginal virus titers in mice 144 hours after inoculation with herpesvirus
type II:

Saline controls 10,000, 3000, 2600, 2400, 1500

Treated with antibiotic 9000,  1700,   1100,    360,        1

In this experiment the observed values vary from 1, which may be written
as 100, to 10,000, which may be written as 104 or 10 times itself 4 

Chapter 6

Analyzing Complex
Experiments
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times. With such wide variation, how can we possibly detect a treatment
effect?

The trick employed by statisticians is to use the logarithms of the obser-
vations in the calculations rather than their original values. The logarithm
or log of 10 is 1, the log of 10,000 written log10(10000) is 4. Log
10(0.1) is -1. (Yes, the trick is simply to count the number of decimal
places that follow the leading digit.)

Using logarithms with growth and percentage-change data has a second
advantage. In some instances, it equalizes the variances of the observations
or their ratios so that they all have the identical distribution up to a shift.
Recall that equal variances are necessary if we are to apply any of the
methods we learned for detecting differences in the means of populations.

Exercise 6.1. Was the antibiotic used by H. E. Renis effective in reducing
viral growth? (Hint: First convert all the observations to their logarithms
using the function log10().)

Exercise 6.2. Although crop yield improved considerably this year on
many of the plots treated with the new fertilizer, there were some notable
exceptions. The recorded after/before ratios of yields on the various plots
were as follows: 2, 4, 0.5, 1, 5.7, 7, 1.5, 2.2. Is there a statistically signifi-
cant improvement?

6.2. COMPARING MORE THAN TWO SAMPLES
The comparison of more than two samples is an easy generalization of the
method we used for comparing two samples. As in Chapter 4, we want a
test statistic that takes more or less random values when there are no dif-
ferences among the populations from which the samples are taken but
tends to be large when there are differences. Suppose we have taken
samples of sizes n1, n2, . . . nI from I populations. Consider either of the
statistics

or

where i. is the mean of the ith sample and .. is the grand mean of all
the observations.

XX

F1 1
= -

=Â n X Xi ii

I
. ..

F2
2

1
= -( )

=Â n X Xi ii

I
. ..
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Recall from Chapter 1 that the symbol S stands for sum of, so that
. If

the means of the I populations are approximately the same, then changing
the labels on the various observations will not make any difference as 
to the expected value of F2 or F1, as all the sample means will still have
more or less the same magnitude. On the other hand, if the values in the
first population are much larger than the values in the other populations,
then our test statistic can only get smaller if we start rearranging the
observations among the samples. We can show this by drawing a series of
figures as we did in Section 4.3.4 when we developed a test for correla-
tion.

Because the grand mean remains the same for all possible rearrange-
ments of labels, we can use a simplified form of the F2 statistic,

Our permutation test consists of rejecting the hypothesis of no differ-
ence among the populations when the original value of F2 (or of F1 should
we decide to use it as our test statistic) is larger than all but a small frac-
tion, say 5%, of the possible values obtained by rearranging labels.

6.2.1. Programming the Multisample Comparison with Excel
To minimize the work involved, the worksheet depicted in Fig. 6.1 was
assembled in the following order:

1. The original data were placed in cells A3 through D8, with each
sample in a separate column.

2. The sample sizes were placed in cells A9 through D9.

F2
2

1

1
=

=Â n Xi ii . .

n X X n X X n X X n X Xi i I Ii

I
. .. . .. .. . ... . .-( ) = -( ) + -( ) + + -( )

=Â 2
1 1

2
2 2

2 2

1
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means.



3. The sum of the observations in the first sample =SUM(A3:A8) was
placed in cell A10.

4. The square of the sum of the observations in the first sample divided
by the sample size =A10 * A10/A9 was placed in cell A12.

5. The S command of the Resampling Stats add-in was used to generate
the rearranged data in Cells G3 through J8 as described in Section
4.2.2.

6. Cells A10 through A11 were copied, first to cells B10 through B12
and then to cells G10 through G12. Note that Excel modifies the
formula automatically.

7. The total sample size =Sum(A9:D9) was placed in cell E9.

8. Cell E9 was copied to cells E10 through E13.

9. Cell E11 was overwritten with the grand mean =E10/E9.

10. The formula =ABS(A10-A9 * $E$11) was put in cell A13.

11. The contents of cell A13 were copied and pasted first into cells B13
through D13 and then into cells G13 to J13. Note that Excel does
not modify row and column headings that are preceded by a dollar
sign. Thus the contents of cell J13 are now =ABS(J10-J9 * $E$11).

12. Cell E12 was copied and pasted first into cell E13 and then into cells
K12 through K13.

The next step is to run the Resampling Stats RS command for either F2
in cell K12 or F1 in cell K13. Finish by sorting the first column on the
Results worksheet to determine the p value, that is, what proportion of
the rearrangements yield values of F2 greater than 11465? Or of F1
greater than 112?

Exercise 6.3. Use BoxSampler to generate four samples from a N(0,1)
distribution. Use sample sizes of 4, 4, 3, and 5, respectively. Repeat the
preceding steps using the F2 statistic to see whether this procedure will
detect differences in these four samples despite their all being drawn from
the same population. (If you’ve set up the worksheet correctly, the answer
should be “no.”)

Exercise 6.4. Modify your data by adding the value 2 to each member of
the first sample. Now test for differences among the populations.

Exercise 6.5. We saw in Exercise 6.4 that if the expected value of the first
population was much larger than the expected values of the other popula-
tions we would have a high probability of detecting the difference. Would
the same be true if the mean of the second population was much higher
than that of the first? Why?
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Exercise 6.6. Modify your data by adding 1 to all the members of the
first sample and subtracting 1.2 from each of the three members of the
third sample. Now test for differences among the populations.

6.2.2. What Is the Alternative?
We saw in the preceding exercises that we can detect differences among
several populations if the expected value of one population is much larger
than the others or if the mean of one of the populations is a little higher
and the mean of a second population is a little lower than the grand
mean.

Suppose we represent the expectations of the various populations as
follows: EXi = m + di where m (pronounced mu) is the grand mean of all
the populations and di represents the deviation of the expected value of
the ith population from this grand mean. The sum of these deviations Sdi

= d1 + d2 + . . . dI = 0. We will sometimes represent the individual observa-
tions in the form Xij = m + di + zij, where zij is a random deviation with
expected value 0 at each level of i. The permutation tests we describe in
this section are applicable only if all the zij have the same distribution at each
level of i.

One can show, although the mathematics is tedious, that the power of a
test using the statistic F2 is an increasing function of Sdi

2. The power of a
test using the statistic F1 is an increasing function of S|di|. The problem
with these omnibus tests is that although they allow us to detect any of a
large number of alternatives, they are not especially powerful for detecting
any specific alternative. As we shall see in the next section, if we have
some advance information that the alternative is, for example, an ordered
dose response, then we can develop a much more powerful statistical test
specific to that alternative.

Exercise 6.7. Suppose a car manufacturer receives four sets of screws,
each from a different supplier. Each set is a population. The mean of the
first set is 4mm, the second set 3.8mm, the third set 4.1mm, and the
fourth set 4.1mm, also. What would the values of m, d1, d2, d3, and d4 be?
What would be the value of S|di|?

6.2.3. Testing for a Dose Response or Other 
Ordered Alternative
Frank, Trzos, and Good studied the increase in chromosome abnormalities
and micronuclei as the dose of various compounds known to cause muta-
tions was increased. Their object was to develop an inexpensive but sensi-
tive biochemical test for mutagenicity that would be able to detect even
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marginal effects. The results of their experiment are reproduced in Table
6.1.

To analyze such data, Pitman proposes a test for linear correlation with
three or more ordered samples using as test statistic S = Sg[i]si, where si is
the sum of the observations in the ith dose group, and g[i] is any monot-
one increasing function of i. The simplest example of such a function is
g[i] = i, with test statistic S = Sg[i]si. In this instance, based on the recom-
mendation of experts in toxicology, we take g[dose] = log[dose + 1], as
the anticipated effect is proportional to the logarithm of the dose. Our
test statistic is S = Slog[dosei + 1]si.

The original data for breaks may be written in the form

0 1 1 2 0 1 2 3 5 3 5 7 7 6 7 8 9 9

As log [0 + 1] = 0, the value of the Pitman statistic for the original data
is 0 + 11* log[6] + 22* log[21] + 39* log[81] = 112.1. The only larger
values are associated with the small handful of rearrangements of the 
form
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Dose Number of Micronucelii per Breaks per
(mg/kg) Animals 200 cells 25 cells

0 4 0 0 0 0 0 1 1 2

5 5 1 1 1 4 5 0 1 2 3 5

20 4 0 0 0 4 3 5 7 7

80 5 2 3 5 11 20 6 7 8 9 9

TABLE 6.1 Micronuclei in Polychromatophilic Erythrocytes and Chromosome
Alterations in the Bone Marrow of Mice Treated with CY

0 0 1 2 1 1 2 3 5 3 5 7 7 6 7 8 9 9

0 0 1 1 1 2 2 3 5 3 5 7 7 6 7 8 9 9

0 0 1 1 1 2 2 3 3 5 5 7 7 6 7 8 9 9

0 0 1 2 1 1 2 3 3 5 5 7 7 6 7 8 9 9

0 1 1 2 0 1 2 3 3 5 5 7 7 6 7 8 9 9

0 1 1 2 0 1 2 3 5 3 5 6 7 7 7 8 9 9

0 0 1 2 1 1 2 3 5 3 5 6 7 7 7 8 9 9

0 0 1 1 1 2 2 3 5 3 5 6 7 7 7 8 9 9

0 0 1 1 1 2 2 3 3 5 5 6 7 7 7 8 9 9

0 0 1 2 1 1 2 3 3 5 5 6 7 7 7 8 9 9

0 1 1 2 0 1 2 3 3 5 5 6 7 7 7 8 9 9



As there are 771,891,120 rearrangements in all,1 a statistically

significant ordered dose response of p < 0.001 has been detected. The
micronuclei also exhibit a statistically significantly dose response when we
calculate the permutation distribution of S = Slog[dosei + 1]ni.

To make the calculations for this second test, we took advantage once
again of the Resampling Statistics add-in as shown in Fig. 6.2. The doses
were entered in row 2 and converted to log doses in row 3. The original
data were entered in B4:E8. Row 9 contains the cross products. As in pre-
vious sections, the Shuffle comand was used to generate a single
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FIGURE 6.2 Preparing to compute the permutation distribution of the
Pitman correlation.

1 See Section 2.2.1.



rearrangement and then the Repeat and Shuffle command to generate the
permutation distribution of the test statistic in cell J10.

A word of caution: If we use as the weights some function of the dose
other than g[dose] = log[dose + 1], we might observe a different result.
Our choice of a test statistic must always make practical as well as statisti-
cal sense.

Exercise 6.8. Using the data for micronuclei, see if you can detect a sig-
nificant dose effect. (Hint: I usually use N = 400 repetitions to begin
with. Try with both N = 400 and N = 1600.)
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k-SAMPLE TEST FOR ORDERED SAMPLES

Hypothesis H: All distributions and all population means are the same.

Alternative K: The population means are ordered.

Assumptions under the null hypothesis:

1) Labels on the observations can be exchanged if the hypothesis is
true.

2) All the observations in the ith sample come from the same distribu-
tion Gi,

where G[x] = Pr{X £ x} = F[x - d].

Test statistic:

S = Sg[i]xi. where xi. is the sum of the observations in the ith sample.

Exercise 6.9. Aflatoxin is a common and undesirable contaminant of
peanut butter. Are there significant differences in aflatoxin levels among
the following brands?

Snoopy 0.5 7.3 1.1 2.7 5.5 4.3
Quick 2.5 1.8 3.6 5.2 1.2 0.7
Mrs. Good’s 3.3 1.5 0.4 4.8 2.2 1.0
(Hint: What is the null hypothesis? What alternative or alternatives are of interest?)

Exercise 6.10. Does the amount of potash in the soil affect the strength
of fibers made of cotton grown in that soil? Consider the data in the fol-
lowing table:



6.3. EQUALIZING VARIANCES
Suppose that to cut costs on our weight loss experiment, we have each
participant weigh him or herself. Some individuals will make very precise
measurements, perhaps repeating the procedure three or four times to
make sure they’ve performed the measurement correctly. Others, will say
“close enough,” and get the task done as quickly as possible. The problem
with our present statistical methods is they treat each observation as if it
were equally important. Ideally, we should give the least consideration to
the most variable measurements and the greatest consideration to those
that are least variable. The problem is that we seldom have any precise
notion of what these variances are.

One possible solution is to put all results on a pass-fail or success-failure
basis. This way, if the goal is to lose at least 7% of body weight, losses of
5% and 20% would offset each other, rather than a single 20% loss being
treated as if it were equivalent to four losses of 5%. These pass-fail results
would follow a binomial distribution, and the appropriate method for
testing binomial hypotheses could be applied.

The downside is the loss of information, but if our measurements are
not equally precise, perhaps it is noise rather than useful information that
we are discarding.

Here is a second example: An experimenter administered three drugs in
random order to each of five recipients. He recorded their responses and
now wishes to decide whether there are significant differences among
treatments. The problem is that the five subjects have quite different base-
lines. A partial solution would be to subtract an individual’s baseline value
from all subsequent observations made on that individual. But who is to
say that an individual with a high baseline value will respond in the same
way as an individual with a low baseline reading?

An alternate solution would be to treat each individual’s readings as a
block (see Section 5.2.3) and then combine the results. But then we run
the risk that the results from an individual with unusually large responses
might mask the responses of the others. Or suppose the measurements
actually had been made by five different experimenters using five different
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Potash Level (lb/acre)

144 108 72 54 36

Breaking 7.46 7.17 7.76 8.14 7.63

Strength 7.68 7.57 7.73 8.15 8.00
7.21 7.80 7.74 7.87 7.93



measuring devices in five different laboratories. Would it really be appro-
priate to combine them?

No, for sets of observations measured on different scales are not
exchangeable. By converting the data to ranks, separately for each case, we
are able to put all the observations on a common scale, and then combine
the results.

When we replace observations by their ranks, we generally give the
smallest value rank 1, the next smallest rank 2, and so forth. If there are
N observations, the largest will have rank N. In Tables 6.2a and 6.2b,
we’ve made just such a transformation using the following procedure:

1. As the number 89.7 was in cell B3, in cell B7 we inserted the formula
= RANK(B3,B$3:B$5).

2. We then copied this formula into the region B7:F9.

When three readings are made on each of five subjects, there are a total
of (3!)5 = 7776 possible rearrangements of labels within blocks (subjects).
For a test of the null hypothesis against any and all alternatives using F2 as
our test statistic, as can be seen in Table 6.2b, only 2 ¥ 5 = 10 of them, a
handful of the total number of rearrangements, are as or more extreme
than our original set of ranks.

Exercise 6.11. Suppose we discover that the measurement for Subject D
for Treatment 1 was recorded incorrectly and should actually be 90. How
would this affect the significance of the results depicted in Table 6.2?

Exercise 6.12. Does fertilizer help improve crop yield when there is
minimal sunlight? Here are the results of a recent experiment exactly as
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TABLE 6.2a Original Observations

A B C D E

Control 89.7 75 105 94 80

Treatment 1 86.2 74 95 98 79

Treatment 2 76.5 68 94 93 84

TABLE 6.2b Ranks

A B C D E

Control 1 1 1 2 2

Treatment 1 2 2 2 1 3

Treatment 2 3 3 3 3 1



they were recorded. (Numbers in bushels.) No fertilizer: 5, 10, 8, 6, 9,
122. With fertilizer: 11, 18, 15, 14, 21, 14.
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WHEN TO USE RANKS

1. When one or more extreme-valued observations are suspect.

2. When the methods used to make the measurements were not the
same for each observation.

Many older textbooks advocate the use of tests based on ranks for a
broad variety of applications. But rank tests are simply permutation tests
applied to the ranks of observations rather than to their original values.
Their value has diminished as a result of improvements in computer tech-
nology, and they should not be used except in the two instances outlined
above.

Ranks are readily obtained in R by use of the function rank().

6.4. STRATIFIED SAMPLES
In Section 5.2.3, we discussed how stratification or blocking of our experi-
ments could be used to reduce unwanted variation. Table 6.3 contains the
results of just such an experiment in which plants were grown separately in
shade and in full sunlight.

As we would expect yield to increase with increased amounts of fertil-
izer, Pitman’s correlation would appear to be the statistic of choice. We
should use the method of Section 6.2.3 to analyze the data with one
exception: We have to reshuffle the labels separately in each stratum.

To accomplish this as shown in Fig. 6.3, we need to mark off each
stratum with the use of ampersands (&). Note that &1 is placed both
before the start of the first stratum of the original observations and to
mark the place where the shuffled first stratum is to be located. The
marker && is placed in the cell immediately below the first observation in
the last stratum.

Exercise 6.13. Show that increasing the amount of fertilizer will increase
the crop yield.

TABLE 6.3 Level of Added Fertilizer

Level of Sunlight Low Med High

Low 5,10,8 15,22,18 21,29,25

High 6,9,12 25,32,40 55,60,48



Exercise 6.14. Using the data in Table 6.4, determine whether there are
significant differences among the various types of tires. Note that we have
blocked the data by vehicle to correct for the diverse driving habits of
their drivers.

6.5. CATEGORICAL DATA
We have shown in two examples (Sections 4.3.4 and 6.2.3) how one may
test for the independence of metric variables using a correlation coeffi-
cient. But what if our observations are categorical, involving race or
gender or some other categorical attribute?
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FIGURE 6.3 Preparing to shuffle data independently within strata.

TABLE 6.4 Tire Comparison

Vehicle/ Tire Type
Track A B C D

1 15.6 24.6 23.7 16.2

2 9.1 17.1 20.8 11.8

3 13.4 20.3 28.3 16.0

4 12.7 19.8 25.1 15.8

5 11.0 18.2 21.4 14.1



Suppose on examining the cancer registry in a hospital, we uncover data
that we put in the form of a 2 ¥ 2 contingency table (Table 6.5).

The 9 denotes the number of males who survived, the 1 denotes the
number of males who died, and so forth. The four marginal totals or
marginals are 10, 14, 13, and 11. The total number of men in the study
is 10, whereas 14 denotes the total number of women, and so forth.

The marginals in Table 6.5 are fixed because, indisputably, there are 11
dead bodies among the 24 persons in the study and 14 women. Suppose
that before completing the table, we lost the subject ids so that we could
no longer identify which subject belonged in which category. Imagine you
are given two sets of 24 labels. The first set has 14 labels with the word
“woman” and 10 labels with the word “man.” The second set of labels
has 11 labels with the word “dead” and 12 labels with the word “alive.”
Under the null hypothesis that survival is independent of sex, you are
allowed to distribute the two sets of labels to the subjects independently
of one another. One label from each of the two sets per subject, please.

There are a total of ways you could hand out the gender labels 

“man” and “woman.” of these assignments result in tables that 

are as extreme as our original table (that is, in which 90% of the men 

survive) and in tables that are more extreme (100% of the men 

survive)—see Tables 6.6a,b.2

This is a very small fraction of the total, less than 1%. Consequently, we
feel safe in concluding that a difference in survival rates of the two sexes at
least as extreme as the difference we observed in our original table is very
unlikely to have occurred by chance alone. We reject the hypothesis that
the survival rates for the two sexes are the same and accept the alternative
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TABLE 6.5 Cancer Survival as a Function of Gender

Survived Died Total

Men 9 1 10

Women 4 10 14

Total 13 11 24

2 Note that in terms of the relative survival rates of the two sexes, the first of these tables is
more extreme than our original Table 6.2. The second is less extreme.



hypothesis that, in this instance at least, males are more likely to profit
from treatment.

6.5.1. One-Sided Fisher’s Exact Test
The preceding test is known as Fisher’s Exact Test as it was first described
by R. A. Fisher in 1935. Before we can perform this test, we need to con-
sider the general case depicted in Table 6.7.

If the two attributes represented by the four categories are independent
of one another, then each of the tables with the marginals n, m, and t is

equally likely. If t is the smallest marginal, there are a total of 

possible tables. If t - x is the value in the cell with the fewest observa-

tions, then tables are as or more extreme than the one we 

observed.
In Section 2.2.1, we learned to use Excel to compute combinatorials.

By making repeated use of the Combin() function, we can solve the fol-
lowing exercises.

Exercise 6.15. What is the probability of observing Table 6.5 or one
more extreme by chance alone?
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TABLE 6.6a Cancer Survival as a Function of Gender

Survived Died Total

Men 10 0 10

Women 3 11 14

Total 13 11 24

TABLE 6.6b Cancer Survival as a Function of Gender

Survived Died Total

Men 8 2 10

Women 5 9 14

Total 13 11 24

TABLE 6.7

Category 1 Category 2 Total

Category A t - x x t

Category B n - (t - x) M - x M + n - t

Total n m m + n



Exercise 6.16. A physician has noticed that half his patients who suffer
from sore throats get better within a week if they get plenty of bed rest.
(At least they don’t call him back to complain that they aren’t better.) He
decides to do a more formal study and contacts each of 20 such patients
during the first week after they’ve come to see him. What he learns sur-
prises him. Twelve of his patients didn’t get much of any bed rest, or if
they did go to bed on a Monday, they were back at work on a Tuesday.
Of these noncompliant patients, six had no symptoms by the end of the
week. The remaining eight patients all managed to get at least three days
of bed rest (some by only going to work half-days) and of these, six also
had no symptoms by the end of the week. Does bed rest really make a 
difference?

6.5.2. The Two-Sided Test
In the example of the cancer registry, we tested the hypothesis that sur-
vival rates do not depend on sex against the alternative that men diag-
nosed with cancer are likely to live longer than women similarly
diagnosed. We rejected the null hypothesis because only a small fraction of
the possible tables were as extreme as the one we observed initially. This is
an example of a one-tailed test. But is it the correct test? Is this really the
alternative hypothesis we would have proposed if we had not already seen
the data? Wouldn’t we have been just as likely to reject the null hypothesis
that men and women profit the same from treatment if we had observed a
table like Table 6.8?

Of course we would! In determining the significance level in this
example, we must perform a two-sided test and add together the total
number of tables that lie in either of the two extremes or tails of the per-
mutation distribution.

Unfortunately, it is not as obvious which tables should be included in
the second tail. Is Table 6.8 as extreme as Table 6.5 in the sense that it
favors an alternative more than the null hypothesis? One solution is simply
to double the p value we obtained for a one-tailed test. Alternately, we can
define and use a test statistic as a basis of comparison. One commonly
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TABLE 6.8

Survived Died Total

Men 0 10 10

Women 13 1 14

Total 13 11 24



used measure is the Pearson c2 (chi-square) statistic defined for the 2 ¥ 2
contingency table after eliminating terms that are invariant under permuta-
tions as [¥ - tm/(m + n)]2. For Table 6.5, this statistic is 12.84; for Table
6.8, it is 29.34.

Exercise 6.17. Show that Table 6.9a is more extreme (in the sense of
having a larger value of the chi-square statistic) than Table 6.5, but Table
6.9b is not.

6.5.3. Multinomial Tables
It is possible to extend the approach described in the previous sections to
tables with multiple categories such as Table 6.10 and Table 6.11.
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TABLE 6.9a

Survived Died Total

Men 1 9 10

Women 12 2 14

Total 13 11 24

TABLE 6.9b

Survived Died Total

Men 2 8 10

Women 11 3 14

Total 13 11 24

TABLE 6.10

Full Partial No
Recovery Recovery Improvement

Untreated

Low Dose

High Dose

TABLE 6.11

Urban Suburban Rural

Republican

Democrat

Independent



As in the preceding sections, we need only to determine the total
number of tables with the same marginals as well as the number of tables
that are as or more extreme than the table at hand. Two problems arise.
First, what do we mean by more extreme? In Table 6.10, would a row
that held one more case of “Full Recovery” be more extreme than a table
that held two more cases of “Partial Recovery?” At least a half-dozen dif-
ferent statistics including the Pearson c2 statistic have been suggested for
use with tables like Table 6.11 in which neither category is ordered.

The second problem that arises lies in the computations, which are not
a simple generalization of the program for the 2 ¥ 2 case. The sole excep-
tion, as we shall see in the next section, is if the categories of either the
rows or columns can be ordered.

Exercise 6.18. In a two-by-two contingency table, once we fix the mar-
ginals, we are only free to modify a single entry. In a three-by-three table,
how many different entries are we free to change without changing the
marginals? Suppose the table has R rows and C columns, how many dif-
ferent entries are we free to change without changing the marginals?

6.5.4. Ordered Categories
When either the rows or columns of a contingency table represent ordered
categories, we can analyze the data by any of the methods we used for
continuous observations, providing we can assign a numeric value to the
categories. The leading choices for a scoring method are the following:

1. The category number: 1 for the first ordered category, 2 for the second
and so forth

2. The midrank scores

3. Scores determined by the domain expert—a biologist, a physician, a
physiologist

To show how such scores might be computed, consider Table 6.12.
The category or equidistant scores are 0, 1, and 2. The ranks of the 44

observations are 1 through 15, 16 through 25, and 26 through 44, so
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TABLE 6.12 Antiemetic Response Data After 2 Days

Level of Response

None Partial Complete Total

Control X1 = 12 X2 = 3 X3 = 7 N1 = 22

Treatment Y1 = 3 Y2 = 7 Y3 = 12 N2 = 22

Total T1 = 15 T2 = 10 T3 = 19 N = 44

Fox et al., 1993.



that the midrank score of those in the first category is 8, the second 20.5,
and the third 35, while physician-chosen scores might be -5, -2, and +1.

Exercise 6.19. Does treatment have an effect on antimetic response after
two days?

Exercise 6.20. Many surveys use a five-point Likert scale to measure
respondents’ attitudes, where a value of “1” means the respondent defi-
nitely disagrees with a statement and a value of “5” means he definitely
agrees. Suppose you have collected the views of Republicans, Democrats,
and Independents as in Table 6.13. Analyze the results.

6.6. SUMMARY AND REVIEW
In this chapter, you learned to analyze a variety of different types of exper-
imental data. You learned to convert your data to logarithms when
changes would be measured in percentages or when analyzing data from
dividing populations. You learned to convert your data to ranks when
observations were measured on different scales or when you wanted to
minimize the importance of extreme observations.

You learned to specify in advance of examining your data whether your
alternative hypotheses of interest were one-sided or two-sided, ordered or
unordered and to make use of stratification in design and analysis.

You learned how to compare binomial populations, to analyze 2 ¥ 2
contingency tables, and to analyze ordinal data.

Exercise 6.21. Write definitions for all italicized words in this chapter.
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TABLE 6.13 “Stem ± Cell Research is Essential”

1 2 3 4 5

Republican 25 18 8 20 15

Democrat 8 11 15 20 30

Independent 3 1 8 2 4



IN THIS CHAPTER YOU WILL LEARN VALUABLE TECHNIQUES with which to
develop forecasts and classification schemes. These techniques have been
used to forecast parts sales by the Honda Motors Company and epidemics
at naval training centers, to develop criteria for retention of marine
recruits, optimal tariffs for Federal Express, and multitiered pricing plans
for Delta Airlines. And these are just examples in which I’ve been person-
ally involved!

7.1. MODELS
A model in statistics is simply a way of expressing a quantitative relation-
ship between one variable, usually referred to as the dependent variable,
and one or more other variables, often referred to as the predictors. We
began our text with a reference to Boyle’s law for the behavior of perfect
gases, V = KT/P. In this version of Boyle’s law, V (the volume of the gas)
is the dependent variable; T (the temperature of the gas) and P (the pres-
sure exerted on and by the gas) are the predictors; and K (known as
Boyle’s constant) is the coefficient of the ratio T/P.

An even more familiar relationship is that between the distance S trav-
eled in t hours and the velocity V of the vehicle in which we are traveling:
S = Vt. Here S is the dependent variable and V and t are predictors. If we
travel at a velocity of 60mph for 3 hours we can plot the distance we
travel over time with Excel as follows:

1. Put the labels Time and Distance at the head of the first two columns.

2. Put the values 0.5, 1, 1.5, 2, 2.5, and 3 in the first column.

Chapter 7
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3. Put the formula = 60 * A3 in cell B3 and copy it down the column.

4. Create a scatterplot, using Excel’s Chart Wizard. Select “XY(Scatter)”
but use the option “Scatter with data points connected by smoothed
lines without markers.”

I attempted to drive at 60mph on a nearby highway past where a truck
had recently overturned. Recording the distances at half-hour intervals, I
found I’d traveled 32, 66, 75, 90, 115, and 150 miles.

As you can see from Fig. 7.1, the reality on a busy highway was quite
different from what theory would predict. Incidentally, I created this
figure with the aid of DDXL. The setup is depicted in Fig. 7.2.

Exercise 7.1. My average velocity over the three-hour period was equal
to distance traveled/time = 150/3 = 50 miles per hour, or Distancei =
50*Timei + zi, where the {zi} are random deviations from the expected
distance. Construct a graph to show that this new model is a much better
fit than the old.

7.1.1. Why Build Models?
We develop models for at least three different purposes. First, as the term
“predictors” suggests, models can be used for prediction. A manufacturer
of automobile parts will want to predict part sales several months in
advance to ensure that its dealers have the necessary parts on hand. Too
few parts in stock will reduce profits; too many may necessitate interim
borrowing. So entire departments are hard at work trying to come up
with the needed formula.
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At one time, I was part of just such a study team. We soon realized that
the primary predictor of part sales was the weather. Snow, sleet, and freez-
ing rain sent sales skyrocketing. Unfortunately, predicting the weather is as
or more difficult than predicting part sales.

Models can be used to develop additional insight into cause-and-effect
relationships. At one time, it was assumed that the growth of the welfare
caseload L was a simple function of time t, so that L = ct, where the
growth rate c was a function of population size. Throughout the 1960s, in
state after state, the constant c constantly had to be adjusted upward if
this model were to fit the data. An alternative and better-fitting model
proved to be L = ct + dt2, an equation often used in modeling the growth
of an epidemic. As it proved, the basis for the new second-order model
was the same as it was for an epidemic: Welfare recipients were spreading
the news of welfare availability to others who had not yet taken advantage
of the program much as diseased individuals might spread an infection.

Boyle’s law seems to fit the data in the sense that if we measure both
the pressure and volume of gases at various temperatures, we find that a
plot of pressure times volume versus temperature yields a straight line. Or
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FIGURE 7.2 Preparing a scatterplot that will depict multiple lines.



if we fix the volume, say by confining all the gas in a chamber of fixed size
with a piston on top to keep the gas from escaping, a plot of the pressure
exerted on the piston against the temperature of the gas yields a straight
line.

Observations such as these both suggested and confirmed what is
known today as kinetic molecular theory.

A third use for models is in classification. At first glance, the problem of
classification might seem quite similar to that of prediction. For example,
instead of predicting that Y would be 5 or 6 or even 6.5, we need only
predict that Y will be greater or less than 6. But the loss functions for the
two problems are quite different. The loss connected with predicting yp

when the observed value is yo is usually a monotone increasing function of
the difference between the two. By contrast, the loss function connected
with a classification problem has jumps, being zero if the classification is
correct, and taking one of several possible values otherwise, depending on
the nature of the misclassification.

Not surprisingly, different modeling methods have developed to meet
the different purposes. For the balance of this chapter, we shall consider
two primary modeling methods: linear regression, whose objective is to
predict the expected value of a given dependent variable, and decision
trees, which are used for classification. We shall briefly discuss some other
alternatives.

7.1.2. Caveats
The modeling techniques that you learn in this chapter may seem 
impressive—they require extensive calculations that only a computer can
do—so I feel it necessary to issue three warnings.

• You cannot use the same data both to formulate a model and to
test it. It must be independently validated.

• A cause-and-effect basis is required for every model, just as 
molecular theory serves as the causal basis for Boyle’s law.

• Don’t let your software do your thinking for you. Just because a
model fits the data does not mean that it is appropriate or correct.
It must be independently validated and have a cause-and-effect
basis.

You may have heard that having a black cat cross your path will bring
bad luck. Don’t step in front of a moving vehicle to avoid that black cat
unless you have some causal basis for believing that black cats can affect
your luck. (And why not white cats or tortoiseshell?) I avoid cats myself
because cats lick themselves and shed their fur; when I breathe cat hairs,
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the traces of saliva on the cat fur trigger an allergic reaction that results in
the blood vessels in my nose dilating. Now that is a causal connection.

7.2. REGRESSION
Regression combines two ideas with which we gained familiarity in previ-
ous chapters:

1. Correlation or dependence among variables

2. Additive model

Here is an example: Anyone familiar with the restaurant business (or
indeed, with any number of businesses that provide direct service to the
public, including the post office) knows that the volume of business is a
function of the day of the week. Using an additive model, we can repre-
sent business volume via the formula

where Vij is the volume of business on the ith day of the jth week, m is the
average volume, di is the deviation from the average volume observed on
the ith day of the week, i = 1, . . . , 7, and the zij are independent, identi-
cally distributed random fluctuations.

Many physiological processes such as body temperature have a circadian
rhythm, rising and falling each 24 hours. We could represent body tem-
perature by the formula

where i (in minutes) takes values from 1 to 24*60, but this would force
us to keep track of 1441 different parameters. Besides, we can get almost
as good a fit to the data by using the formula

(7.1)

If you are not familiar with the cos() function, you can use Excel to
gain familiarity as follows:

1. Put the hours from 1 to 24 in the first column.

2. In the third cell of the second column, put = cos(2 * 3.1412 * (A3 +
6)/24).

3. Copy the formula down the column; then construct a scatterplot.

E Tij t( ) = + +( )( )m b cos *2 300 1440P

Tij i ijz= + +m d ,

Vij i ijz= + +m d
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Note how the cos() function first falls then rises, undergoing a complete
cycle in a 24-hour period.

Why use a formula as complicated as Equation 7.1? Because now we
have only two parameters we need to estimate, m and b. For predicting
body temperature, m = 98.6 and b = 0.4 might be reasonable choices. Of
course, the values of these parameters will vary from individual to individ-
ual. For me, m = 97.6.

Exercise 7.2. If E(Y) = 3X + 2, can X and Y be independent?

Exercise 7.3. According to the inside of the cap on a bottle of Snapple’s
Mango Madness, “the number of times a cricket chirps in 15 seconds plus
37 will give you the current air temperature.” How many times would you
expect to hear a cricket chirp in 15 seconds when the temperature is 39
degrees? 124 degrees?

Exercise 7.4. If we constantly observe large values of one variable, call it
Y, whenever we observe large values of another variable, call it X, does
this mean X is part of the mechanism responsible for increases in the value
of Y? If not, what are the other possibilities? To illustrate the several possi-
bilities, give at least three real-world examples in which this statement
would be false. (You’ll do better at this exercise if you work on it with one
or two others.)

7.2.1. Linear Regression
Equation 7.1 is an example of linear regression. The general form of linear
regression is

(7.2)

Where Y is known as the dependent or response variable, X is known as the
independent variable or predictor, f[X] is a function of known form, m and
b are unknown parameters, and Z is a random variable whose expected
value is zero. If it weren’t for this last random component Z, then if we
knew the parameters m and b, we could plot the values of the dependent
variable Y and the function f[X] as a straight line on a graph; hence the
name: linear regression.

For the past year, the price of homes in my neighborhood could be rep-
resented as a straight line on a graph relating house prices to time, P = m
+ bt, where m was the price of the house on the first of the year and t is
the day of the year. Of course, as far as the price of any individual house

Y = + [ ] +m b f X Z
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was concerned, there was a lot of fluctuation around this line depending
on how good a salesman the realtor was and how desperate the owner was
to sell.

If the price of my house ever reaches $700K, I might just sell and move
to Australia. Of course, a straight line might not be realistic. Prices have a
way of coming down as well as going up. A better prediction formula
might be P = m + bt - gt2, in which prices continue to rise until b - gt =
0, after which they start to drop. If I knew what b and g were or could at
least get some good estimates of their value, then I could sell my house at
the top of the market!

The trick is to look at a graph such as Fig. 7.1 and somehow extract
that information.

Note that P = m + bt - gt2 is another example of linear regression, only
with three parameters rather than two. So is the formula W = m + bH +
gA + Z where W denotes the weight of a child, H is its height, A its age,
and Z, as always, is a purely random component. W = m + bH + gA +
dAH + Z is still another example. The parameters m, b, g, and so forth are
sometimes referred to as the coefficients of the model.

What then is a nonlinear regression? Here are two examples:

and

Regression models that are nonlinear in their parameters are beyond the
scope of this text. The important lesson to be learned from their existence
is that we need to have some idea of the functional relationship between a
response variable and its predictors before we start to fit a linear regression
model.

Exercise 7.5. Generate a plot of the function P = 100 + 10t - 1.5t2 for
values of t = 0, 1, . . . 10. Does the curve reach a maximum and then turn
over?

7.3. FITTING A REGRESSION EQUATION
Suppose we have determined that the response variable Y whose value we
wish to predict is related to the value of a predictor variable X by the

T which also is linear in but nonlinear in .= +( )b g b gcos ,t

Y = ( )b g b
g

log ,X which is linear in but nonlinear in the unknown 
parameter
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equation, E(Y) = a + bX and on the basis of a sample of n paired observa-
tions (x1, y1), (x2, y2), . . . (xn, yn) we wish to estimate the unknown 
coefficients a and b. Three methods of estimation are in common use:
ordinary least squares, least absolute deviation, and error-in-variable, 
also known as Deming regression. We will study all three in the next few
sections.

7.3.1. Ordinary Least Squares
The ordinary least squares (OLS) technique of estimation is the most
commonly used, primarily for historical reasons, as its computations can be
done (with some effort) by hand or with a primitive calculator. The objec-
tive of the method is to determine the parameter values that will minimize
the sum of squares S(yi - EY)2 where EY, the expected or mean value of
Y, is modeled by the right-hand side of our regression equation.

In our example, EY = a + bxi, and so we want to find the values of a
and b that will minimize S(yi - a - bxi)2. We can readily obtain the desired
estimates with the aid of the XLStat add-in.

Suppose we have the following data relating age and systolic blood pres-
sure (SBP):

• Age 39,47,45,47,65,46,67,42,67,56,64,56,59,34,42

• SBP 144,220,138,145,162,142,170,124,158,154,162,150,140,
110,128

From the main XLStat menu 

select the 

scatterplot (fifth from left). Select the straight-line scatter plot (second 

from left) from the modeling data 

menu that pops up. Enter the observations in the first two columns and
complete the Linear Regression menu as shown in Fig. 7.3.

A plethora of results appear on a second worksheet. Let’s focus on what
is important. In Table 7.1, extracted from the worksheet, we see that the
best-fitting model by least squares methods is that the expected SBP of an
individual is 95.6125119693584 + 1.04743855729333 times that
person’s Age. Note that when we report our results, we write this as
Ê(SBP) = â + b̂Age = 95.6 + 1.04Age, dropping decimal places that
convey a false impression of precision.
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FIGURE 7.3 Preparing to fit a regression line.

TABLE 7.1 Model Parameters

Standard Lower Upper
Parameter Value Deviation Student’s t Pr > t bound 95% bound 95%

Intercept 95.613 29.894 3.198 0.007 31.031 160.194

Age 1.047 0.566 1.850 0.087 -0.176 2.271

The equation of the model writes: SBP = 95.6125119693584 + 1.04743855729333*Age

We also see from Table 7.1 that the coefficient of Age, that is, the slope
of the regression line depicted in Fig. 7.4, is not significantly different
from zero at the 5% level. The associated p value is 0.087 > 0.05. Whether
this p value is meaningful is the topic of Section 7.4.1.

What can be the explanation for the poor fit? Our attention is immedi-
ately drawn to the point in Fig. 7.4 that stands out from the rest. It is
that of a 47-year old whose systolic blood pressure is 220. Part of our
output, reproduced in Table 7.2, includes a printout of all the residuals,
that is, of the differences between the values our regression equation
would predict and the SBPs that were actually observed.

Consider the fourth residual in the series, 0.158. This is the difference
between what was observed, SBP = 145, and what the regression equation
estimates as the expected SBP for a 47-year-old individual E(SBP) = 95.6
+ 1.04*47 = 144.8. The largest residual is 75, which corresponds to the
outlying value we’ve already alluded to.
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TABLE 7.2 Deviations from Regression Line

Age SBP SBP (Model) Residuals

39.000 144.000 136.463 7.537

47.000 220.000 144.842 75.158

45.000 138.000 142.747 -4.747

47.000 145.000 144.842 0.158

65.000 162.000 163.696 -1.696

46.000 142.000 143.795 -1.795

67.000 170.000 165.791 4.209

42.000 124.000 139.605 -15.605

67.000 158.000 165.791 -7.791

56.000 154.000 154.269 -0.269

64.000 162.000 162.649 -0.649

56.000 150.000 154.269 -4.269

59.000 140.000 157.411 -17.411

34.000 110.000 131.225 -21.225

42.000 128.000 139.605 -11.605

Data and regression line
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FIGURE 7.4 Data and regression line of SBP vs. Age.
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Economic Report of the President, 1988,
Table B-27

Income Expenditures
Year 1982 $s 1982 $s

1960 6036 5561

1962 6271 5729

1964 6727 6099

1966 7280 6607

1968 7728 7003

1970 8134 7275

1972 8562 7726

1974 8867 7826

1976 9175 8272

1978 9735 8808

1980 9722 8783

1982 9725 8818

Exercise 7.6. Do U.S. residents do their best to spend what they earn?
Fit a regression line, using OLS, to the data in the accompanying table
relating disposable income to expenditures in the United States from 1960
to 1982.

Exercise 7.7. Suppose we’ve measured the dry weights of chicken
embryos at various intervals at gestation and recorded our findings in the
following table:

Age (days) 6 7 8 9 10 11 12 13 14 15 16

Weight (g) 0.029 0.052 0.079 0.125 0.181 0.261 0.425 0.738 1.130 1.882 2.812

Obtain a plot of the regression line of weight with respect to age on
which the actual observations are superimposed. Recall from Section 6.1
that the preferable way to analyze growth data is by using the logarithms
of the exponentially increasing values. Obtain a plot of the new regression
line of log(weight) as a function of age. Which line (or model) appears to
provide the better fit to the data?

Exercise 7.8. Obtain and plot the OLS regression of systolic blood pres-
sure with respect to age after discarding the outlying value of 220
recorded for a 47-year-old individual. Is the slope of this regression line
significant at the 5% level?



Of course, we just can’t go around discarding observations because they
don’t quite fit our preconceptions. There are two possible reasons why we
may have had an outlier in this example:

1. We made mistakes when we recorded this particular individual’s age
and blood pressure.

2. Other factors such as each individual’s weight-to-height ratio might be
as or more important than age in determining blood pressure. Or the
47-year-old individual whose readings we question night suffer from
diabetes, unlike the others in our study.

If we had data on weight and height as well as age and systolic blood
pressure, we might write

• SBP = a + b *Age + c *weight/(height*height).

Exercise 7.9. In a further study of systolic blood pressure as a function of
age, the height and weight of each individual were recorded. The latter
were converted to a Quetlet index using the formula QUI = 100*weight/
height2. Fit a multivariate regression line of systolic blood pressure with
respect to age and the Quetlet index, using the following information:

Age 41, 43, 45, 48, 49, 52, 54, 56, 57, 59, 62, 63, 65

SBP 122, 120, 135, 132, 130, 148, 146, 138, 135, 166, 152, 170, 164

QUI 3.25, 2.79, 2.88, 3.02, 3.10, 3.77, 2.98, 3.67, 3.17, 3.88, 3.96, 4.13, 4.01

Types of Data. The linear regression model is a quantitative one. When
we write Y = 3 + 2X, we imply that the product 2X will be meaningful.
This will be the case if X is a metric variable. In many surveys, respon-
dents use a nine-point Likert scale, where a value of “1” means they defi-
nitely disagree with a statement and “9” means they definitely agree.
Although such data are ordinal and not metric, the regression equation is
still meaningful.

When one or more predictor variables are categorical, we must use a
different approach. The regression model will include a different additive
component for each level of the categorical or qualitative variable. Thus
we can include sex or race as predictors in a regression model.

Figure 7.5 illustrates the setup of a linear regression model with both
quantitative (continuous) and qualitative predictors. Note that if you have
multiple predictors of the same data type, they should be placed in adja-
cent columns.

As can be seen in Table 7.3, providing for differences in the sexes
appears to lead to a better-fitting model. One caveat: By including sex as a
factor in the model, we have tacitly assumed that the slope of the regres-
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sion line is the same for both sexes. If this is not the case, we would be
better to fit separate regression lines to the data for each sex.

Exercise 7.10. Use the data displayed in Fig. 7.5 to fit separate regression
lines of systolic blood pressure as a function of age for each sex. Are the
slopes of the two regression lines approximately the same?

Exercise 7.11. Make use of the following data regarding smoking habits
in fitting a model to the systolic blood pressure data: Smoke 0, 0, 0, 1, 0,
0, 1, 0, 0, 1, 0, 1, 0

Exercise 7.12. The following data are based on samples taken from
swimming areas off the coast of Milazzo (Italy) from April through 
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FIGURE 7.5 Setting up a regression model to make use of both continu-
ous and categorical predictors.

TABLE 7.3 Parameters of a model with both quantitative and qualitative predictors

Standard Lower Upper
Parameter Value Deviation Student’s t Pr > t Bound 95% Bound 95%

Intercept 79.027 13.592 5.814 < 0.0001 49.663 108.391

Age 1.392 0.255 5.466 0.000 0.842 1.942

Sex—Male 10.644 — — — — —

Sex— -10.644 2.375 -4.482 0.001 -15.775 -5.513
Female



September 1998. Included in this data set are levels of fecal coliform, dis-
solved oxygen, and temperature.

• Are there significant differences in each of these variables from
month to month?

• Develop a model for fecal coliform levels in terms of month, tem-
perature, and dissolved oxygen.

Month 4, 5, 6, 7, 8, 9, 4, 5, 6, 7, 8, 9, 4, 5, 6, 7, 8, 9, 4, 5, 6, 7, 8, 9, 4, 5, 6, 7, 8, 9,
4, 5, 6, 7, 8, 9, 4, 5, 6, 7, 8, 9, 4, 5, 6, 7, 8, 9, 4, 5, 6, 7, 8, 9, 4, 5, 6, 7, 8, 9, 4, 5, 6,
7, 8, 9, 4, 5, 6, 7, 8, 9, 4, 5, 6, 7, 8, 9, 4, 5, 6, 7, 8, 9

Temp 14, 17, 24, 21, 22, 20, 14, 17, 24, 21, 23, 22, 14, 17, 25, 21, 21, 22, 14, 17,
25, 21, 25, 20, 14, 17, 25, 21, 21, 19, 14, 17, 25, 21, 25, 19, 14, 16, 25, 21, 25, 19,
15, 19, 18, 21, 25, 19, 15, 19, 18, 20, 22, 17, 15, 19, 18, 20, 23, 18, 15, 17, 18, 20,
25, 17, 15, 17, 18, 20, 25, 19, 15, 17, 19, 20, 25, 18, 15, 18, 19, 21, 24, 19

FecalColiform 16, 8, 8, 11, 11, 21, 34, 11, 11, 7, 11, 6, 8, 6, 35, 18, 18, 21, 13, 9,
32, 11, 29, 11, 28, 7, 12, 7, 12, 9, 10, 3, 43, 5, 12, 14, 4, 9, 8, 10, 4, 12, 0, 4, 7, 5, 12,
26, 0, 3, 32, 0, 8, 12, 0, 0, 21, 0, 7, 8, 0, 0, 17, 4, 0, 14, 0, 0, 11, 7, 6, 0, 8, 0, 6, 4, 5,
10, 14, 3, 8, 12, 11, 27

Oxygen 95.64, 102.09, 104.76, 106.98, 102.6, 109.15, 96.12, 111.98, 100.67,
103.87, 107.57, 106.55, 89.21, 100.65, 100.54, 102.98, 98, 106.86, 98.17, 100.98,
99.78, 100.87, 97.25, 97.78, 99.24, 104.32, 101.21, 102.73, 99.17, 104.88, 97.13,
102.43, 99.87, 100.89, 99.43, 99.5, 99.07, 105.32, 102.89, 102.67, 106.04, 106.67,
98.14, 100.65, 103.98, 100.34, 98.27, 105.69, 96.22, 102.87, 103.98, 102.76, 107.54,
104.13, 98.74, 101.12, 104.98, 101.43, 106.42, 107.99, 95.89, 104.87, 104.98, 100.89,
109.39, 98.17, 99.14, 103.87, 103.87, 102.89, 108.78, 107.73, 97.34, 105.32, 101.87,
100.78, 98.21, 97.66, 96.22, 22, 99.78, 101.54, 100.53, 109.86

Exercise 7.13. The slope of a regression line is zero if and only if the
correlation between the predictor and the predicted variable is zero. Use
what you learned in previous chapters to test whether the slope of the
regression line of systolic blood pressure versus age is zero.

7.3.2. Least Absolute Deviation Regression
Least absolute deviation regression (LAD) attempts to correct one of the
major flaws of OLS, that of giving sometimes excessive weight to extreme
values. The LAD method solves for those values of the coefficients in the
regression equation for which the sum of the absolute deviations S|yi -
R[xi]| is a minimum. Unfortunately, no add-in for Excel is available to do
LAD regression at the time of this writing.

7.3.3. Errors-in-Variables Regression
The need for errors-in-variables (EIV) or Deming regression is best illus-
trated by the struggles of a small medical device firm to bring its product
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to market. Their first challenge was to convince regulators that their long-
lasting device provided results equivalent to those of a less-efficient device
already on the market. In other words, they needed to show that the
values V recorded by their device bore a linear relation to the values W
recorded by their competitor, that is, that E(V ) = a + bW.

In contrast to the examples of regression we looked at earlier, the errors
inherent in measuring W (the so-called predictor) were as large if not
larger than the variation inherent in the output V of the new device.

The EIV regression method they used to demonstrate equivalence
differs in two respects from that of OLS:

1. With OLS, we are trying to minimize the sum of squares S(yoi - ypi)2

where yoi is the ith observed value of Y and ypi is the ith predicted
value. With EIV, we are trying to minimize the sums of squares of
errors, going both ways: S(yoi - ypi)2/VarY + S(xoi - xpi)2/ VarX.

2. The coefficients of the EIV regression line depend on l = VarX/ VarY.
(l is pronounced lambda.)

Minimizing the sum of squares yields the formulas:

where

To prepare the worksheet depicted in part in Fig. 7.6, I went through
the following steps:

1. Placed the observed values in columns 1 and 2. In this example, the
observations occupy cells A3:B26.

2. Placed the average of the first column in A29.

3. Placed the formula (X - MX)2 = (B3 - B$26) * (B3 - B$26) in cell
C3. The $ is essential.

4. Copied these formulas to C4:C29 and E3:E29.

5. Placed the formula for Sxx = SUM(C3:C26) in B30.

6. Copied cells B29 and B30 to D29 and D30.

7. Placed the formula for the cross product of xy = (B3 - B$29) * (D3 -
D$29) in F3.
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8. Placed the formula for Sxy = SUM(F3:F26) in B31.

9. Placed the formula for the difference Syy - Sxx in D31.

10. Placed the formula = SQRT(D31 * D31 + 4 * B31 * B31) in B32.

11. Placed the formula for the slope b = (D31 + B32)/(2 * B31) in D32.

12. Placed the formula for the intercept a of the regression line with the
X-axis in D33.

13. These coefficients were used to place the first predicted value = D$33
+ D$32 * B3 in G3.

14. Placed the first residual New(Predicted) - New(observed) = G3 - D3
in H3.

15. Finished by copying the formula in G3 and H3 down their respective
columns.

To check your results against mine, here is the complete set of values
that I used:

Old 3.74, 3.66, 0.78, 2.40, 2.18, 1.93, 0.20, 2.50, 3.50, 1.35, 2.36, 3.13, 1.22, 1.00,
1.29, 0.95, 1.05, 2.92, 1.76, 0.51, 2.17, 1.99, 1.53, 2.60

New 3.22, 4.87, 0.12, 2.31, 4.25, 2.24, 2.81, 3.71, 3.11, 0.90, 4.39, 4.36, 1.23, 3.13,
4.05, 2.28, 3.60, 5.39, 4.12, 3.16, 4.40, 1.18, 2.54, 4.89

170 STATISTICS THROUGH RESAMPLING METHODS AND MICROSOFT OFFICE EXCEL®

FIGURE 7.6 Worksheet for calculating error-in-variable regression 
coefficients.



Exercise 7.14. Are the following two sets of measurements comparable,
that is, does the slope of the EIV regression line differ significantly from
unity?

OLD 2.521, 3.341, 4.388, 5.252, 6.422, 7.443, 8.285, 9.253, 10.621, 10.405, 11.874,
13.444, 13.343, 16.402, 19.108, 19.25, 20.917, 23.409, 5.583, 5.063, 6.272, 7.469,
10.176, 6.581, 7.63

NEW 2.362, 3.548, 4.528, 4.923, 6.443, 6.494, 8.275, 9.623, 9.646, 11.542, 10.251,
11.866, 13.388, 17.666, 17.379, 21.089, 21.296, 23.983, 5.42, 6.369, 7.899, 8.619,
11.247, 7.526, 7.653

Exercise 7.15. Which method should be used to regress U as a function
of W in the following cases, OLS, LAD, or EIV?

a. Some of the U values are suspect.

b. It’s not clear whether U or W is the true independent variable or
whether both depend on the value of a third hidden variable.

c. Minor errors in your predictions aren’t important; large ones could be
serious.

7.3.4. Assumptions
To use any of the preceding linear regression methods the following as-
yet-unstated assumptions must be satisfied:

1. Independent random components. In the model yi = m + bxi + zi, the
random fluctuations zi must be independent of one another. If the zi

are not, it may be that a third variable W is influencing their values. 
In such a case, we would be advised to try the model yi = m + bxi + gwi

+ ei.
When observations are made one after the other in time, it often is

the case that successive errors are dependent on one another, but we
can remove this dependence if we work with the increments y2 - y1, y3

- y2, and so forth. Before we start fitting our model, we would convert
to these differences.

2. Identically distributed random components. Often, it is the case that
large random fluctuations are associated with larger values of the obser-
vations. In such cases, techniques available in more advanced textbooks
provide for weighting the observations when estimating model coeffi-
cients so that the least variable observations receive the highest weight.

3. Random fluctuations come from a specific distribution. Most statistics
packages provide tests of the hypotheses that the model parameters are
significantly different from zero given that the random fluctuations
come from a normal distribution. This is true of the p values and confi-
dent limits displayed in Table 7.1. If the fluctuations come from some
other distribution, the displayed values may be quite misleading.
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An alternate approach is to obtain confidence interval for the coeffi-
cients by taking a series of bootstrap samples from the collection of
pairs of observations (39,144), (47,220), . . . , (42,128). To accomplish
this with the Resampling Stats add-in, perform a “Matrix Shuffle”
using the “Shuffle Rows Within Units” option.

Exercise 7.16. Using the data from Exercise 7.14, obtain bootstrap confi-
dence intervals for the EIV regression coefficients.

7.4. PROBLEMS WITH REGRESSION
At first glance, regression seems to be a panacea for all modeling concerns.
But it has a number of major limitations, just a few of which we will
discuss in this section.

• The model that best fits the data we have in hand may not provide
the best fit to the data we gather in the future.

• More than one linear regression model may provide a statistically
significant fit to our data.

7.4.1. Goodness of Fit Versus Prediction
Two assumptions we make whenever we use a regression equation to
make predictions are:

1. Relationships among the variables and, thus, the true regression line
remain unchanged over time.

2. The sources of variation are the same as when we first estimated the
coefficients.

We are seldom on safe grounds when we attempt to use our model
outside the range of predictor values for which it was developed originally.
For one thing, literally every phenomenon seems to have nonlinear behav-
ior for very small and very large values of the predictors. Treat every pre-
dicted value outside the original data range as suspect.

In my lifetime, regression curves failed to predict a drop in the sales of
¢78 records as a result of increasing sales of ¢45s, a drop in the sales of
¢45s as a result of increasing sales of 8-track tapes, a drop in the sales of 8-
track tapes as a result of increasing sales of cassettes, nor a drop in the
sales of cassettes as a result of increasing sales of CDs. It is always advis-
able to revalidate any model that has been in use for an extended period
(see Section 7.5.2).

Finally, let us not forgot that our models are based on samples, and that
sampling error must always be inherent in the modeling process.
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Exercise 7.17. Redo Exercise 7.2.

Exercise 7.18. The state of Washington uses an audit recovery formula in
which the percentage to be recovered (the overpayment) is expressed as a
linear function of the amount of the claim. The slope of this line is close
to zero. Sometimes, depending on the audit sample, the slope is positive,
and sometimes it is negative. Can you explain why?

7.4.2. Which Model?
The exact nature of the formula connecting two variables cannot be deter-
mined by statistical methods alone. If a linear relationship exists between
two variables X and Y, then a linear relationship also exists between Y and
any monotone (nondecreasing or nonincreasing) function of X. Assume X
can only take positive values. If we can fit Model I: Y = a + bX + e to the
data, we also can fit Model II: Y = a¢ + b¢log[X] + e, and Model III: Y =
a≤ + b≤X + gX2 + e. It can be very difficult to determine which model if
any is the “correct” one.

Five principles should guide you in choosing among models:

1. Prevention. The data you collect should span the entire range of inter-
est. For example, when employing EIV regression to compare two
methods of measuring glucose, it is essential to observe many pairs of
observed abnormal values (characteristic of a disease process) along
with the more readily available pairs of normal values. Don’t allow your
model to be influenced by one or two extreme values—whenever this is
a possibility, use LAD regression rather than OLS. Strive to obtain
response observations at intervals throughout the relevant range of the
predictor. Only when we have observations spanning the range of inter-
est can we begin to evaluate competitive models.

2. Think why rather than what. In Exercise 7.7, we let our knowledge of
the underlying growth process dictate the use of log(X) rather than X.
As a second example, consider that had we wanted to find a relation-
ship between the volume V and temperature T of a gas, any of the pre-
ceding three models might have been used to fit the relationship. But
only one, the model V = a + KT, is consistent with kinetic molecular
theory.

3. Plot the residuals. That is, plot the error or difference between the
values predicted by the model and the values that were actually
observed. If a pattern emerges from the plot, then modify the model to
correct for the pattern. The Exercises 7.19 and 7.20 illustrate this
approach.

Exercise 7.19. Apply Model III to the blood pressure data at the begin-
ning of Section 7.3.1. Examine a plot of the residuals. What does this plot
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suggest about the use of Model III in this context versus the simpler
model that was used originally?

Exercise 7.20. Plot the residuals for the models and data of Exercise 7.6.
What do you observe?

The final two guidelines are contradictory in nature:

4. The more parameters the better the fit. Thus Model III is to be preferred
to the two simpler models.

5. The simpler, more straightforward model is more likely to be correct
when we come to apply it to data other than the observations in hand;
thus Models I and II are to be preferred to Model III.

7.4.3. Measures of Predictive Success
The values we observe will be normally distributed about their expected
values only if the deviations about the expected values are the sum of a
large number of factors each of which only makes a small contribution to
the total.

At the beginning of this section, we tried to build a model of systolic
blood pressure purely as a function of age. The Quetlet index was lumped
in with the “random” factors and, not surprisingly, made a disproportion-
ate contribution to the total. Consequently, the p values and confidence
limits of Table 7.1 are suspect.

In such a case, we can obtain more accurate confidence limits in two
ways:

1. By blocking—deriving separate regression lines for males and females,
smokers and nonsmokers, diabetics and nondiabetics.

2. By including additional factors such as the Quetlet index in our
models.

Unfortunately, the latter approach is subject to diminishing returns. As
we add more factors, we appear to be getting a better fit, but the result
may be spurious, a purely chance effect. The fraudulent nature of our
model will be revealed only later when we attempt to use it for prediction.

Two preventive measures can help you avoid this situation. First, you
should always validate your model. Section 7.6 is devoted to this impor-
tant topic.

Second, you should take advantage of one of the indexes that have been
developed to let you know when you’ve begun to overfit a model.

Recall that in selecting among models, we used as one measure of
goodness of fit SSE = S(yi - y*i)2, where yi and y*i denote the ith observed
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value and the corresponding value obtained from the model. The smaller
this sum of squares, the better the fit.

If the observations are independent, then

The first sum on the right-hand side of the equation is the total sum of
squares (SST). Most statistics software uses as a measure of fit R2 = 1 -
SSE/SST. The closer the value of R2 is to 1, the better.

The automated entry of predictors into the regression equation using
R2 runs the risk of overfitting, as R2 is guaranteed to increase with each
predictor entering the model. To compensate, one may use the adjusted
R2

where n is the number of observations used in fitting the model, p is the
number of regression coefficients in the model, and i is an indicator vari-
able that is 1 if the model includes an intercept and 0 otherwise.

One rule of thumb is to continue to add variables as long as the value
of R2adj (the adjusted coefficient of determination) continues to increase.

Using the data of Exercise 7.9, we fit two models, one with systolic
blood pressure solely a function of age, the other incorporating both age
and the Quetlet index as predictors. Table 7.4 summarizes the results as
abstracted from the Results worksheet of the XLStat regression procedure.
Reading the bottom line of this table, we learn that the addition of a
second predictor has increased R2adj from 0.74 to 0.77.

Exercise 7.21. Does including the data on smoking habits from Exercise
7.9 increase the value of R2adj?

7.4.4. Multivariable Regression
We’ve already studied several examples in which we utilized multiple pre-
dictors in order to obtain improved models. Sometimes, as noted in

1 1 2- -( ) -( )( ) -( )[ ]n i R n p

y y y y y yi i i i-( ) = -( ) - -( )Â ÂÂ * * .
2 2 2
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TABLE 7.4 Goodness of fit coefficients

Model A Model AQ

R (coefficient of correlation) 0.874 0.900

R2 (coefficient of determination) 0.763 0.811

R2adj (adjusted coefficient of determination) 0.742 0.773



Section 7.3.4, dependence among the random errors (as seen from a plot
of the residuals) may force us to use additional variables. This result is in
line with our discussion of experimental design in Chapter 5. We must
control all sources of variation, must measure them, or must tolerate the
“noise.”

But adding more variables to the model equation creates its own set of
problems. Do predictors U and V influence Y in a strictly additive fashion
so that we may write Y = m + aU + bV + Z ? What if U represents the
amount of fertilizer, V the total hours of sunlight, and Y the crop yield? If
there are too many cloudy days, then adding fertilizer won’t help a bit.
The effects of fertilizer and sunlight are superadditive (or synergistic). A
better model would be Y = m + aU + bV + gUV + Z.

To achieve predictive success, our observations should span the range
over which we wish to make predictions. With only a single predictor, we
might make just 10 observations spread across the predictor’s range. With
two synergistic or antagonist predictors we are forced to make 10 ¥ 10
observations, with three, 10 ¥ 10 ¥ 10 = 1000 observations, and so forth.
We can cheat, scattering our observations at random or in some optimal
systematic fashion across the grid of possibilities, but there will always be a
doubt as to our model’s behavior in the unexplored areas.

The vast majority of predictors are interdependent. Changes in the value
of one will be accompanied by changes in the other. (Note that we do not
write, “Changes in the value of one will cause or result in changes in the
other.” There may be yet a third, hidden variable responsible for all the
changes.) What this means is that more than one set of coefficients 
may provide an equally good fit to our data. And more than one set of
predictors!

Exercise 7.22 illustrates that whether or not a given predictor will be
found to make a statistically significant contribution to a model will
depend upon what other predictors are present.

Exercise 7.22. To optimize an advertising campaign for a new model of
automobile by directing the campaign toward the best potential cus-
tomers, a study of consumers’ attitudes, interests, and opinions was com-
missioned. The questionnaire consisted of a number of statements
covering a variety of dimensions, including consumers’ attitudes towards
risk, foreign-made products, product styling, spending habits, emissions,
pollution, self-image, and family. The final question concerned the poten-
tial customer’s attitude toward purchasing the product itself. All responses
were tabulated on a nine-point Likert scale. Utilize the data below to con-
struct a series of models as follows:
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Express Purchase as a function of Fashion and Gamble

Express Purchase as a function of Fashion, Gamble, and Ozone

Express Purchase as a function of Fashion, Gamble, Ozone, and 
Pollution

In each instance, determine the values of the coefficients, the associated p-
values, and the value of Multiple R2 and Adjusted R2. (As noted in the
preface, for your convenience the following datasets may be downloaded
from ftp://ftp.wiley.com/public/sci_tech_med/
statistics_resampling/.)

Purchase 6, 9, 8, 3, 5, 1, 3, 3, 7, 4, 2, 8, 6, 1, 3, 6, 1, 9, 9, 7, 9, 2, 2, 8, 8, 5, 1, 3, 7,
9, 3, 6, 9, 8, 5, 4, 8, 9, 6, 2, 8, 5, 6, 5, 5, 3, 7, 6, 4, 5, 9, 2, 8, 2, 8, 7, 9, 4, 3, 3, 4, 1,
3, 6, 6, 5, 2, 4, 2, 8, 7, 7, 6, 1, 1, 9, 4, 4, 6, 9, 1, 6, 9, 6, 2, 8, 6, 3, 5, 3, 6, 8, 2, 5, 6,
7, 7, 5, 7, 6, 3, 5, 8, 8, 1, 9, 8, 8, 7, 5, 2, 2, 3, 8, 2, 2, 8, 9, 5, 6, 7, 4, 6, 5, 8, 4, 7, 8,
2, 1, 7, 9, 7, 5, 5, 9, 9, 9, 7, 3, 8, 9, 8, 4, 8, 5, 5, 8, 4, 3, 7, 1, 2, 1, 1, 7, 5, 5, 1, 4, 1,
2, 9, 7, 6, 9, 9, 6, 5, 4, 3, 6, 6, 4, 5, 7, 2, 6, 5, 6, 3, 8, 2, 5, 3, 4, 2, 3, 8, 3, 9, 1, 3, 1,
2, 5, 1, 5, 6, 7, 1, 1, 1, 4, 4, 8, 4, 7, 4, 4, 2, 6, 6, 6, 7, 2, 9, 4, 1, 9, 3, 5, 7, 2, 2, 8, 9,
2, 4, 1, 7, 1, 3, 6, 2, 6, 2, 8, 4, 4, 1, 1, 2, 2, 8, 3, 3, 3, 1, 1, 6, 8, 3, 7, 5, 9, 8, 3, 5, 6,
3, 4, 6, 1, 1, 5, 6, 6, 9, 6, 9, 9, 6, 7, 3, 8, 4, 2, 6, 4, 8, 3, 3, 6, 4, 4, 9, 5, 6, 4, 5, 3, 3,
2, 5, 9, 5, 1, 3, 4, 3, 6, 8, 1, 5, 3, 4, 8, 2, 5, 3, 2, 3, 2, 5, 8, 3, 1, 6, 3, 7, 8, 9, 2, 3, 5,
7, 7, 3, 7, 3, 9, 2, 9, 3, 9, 2, 8, 9, 5, 1, 9, 9, 1, 8, 7, 1, 4, 9, 3, 4, 9, 1, 3, 9, 1, 5, 2, 7,
9, 6, 5, 7, 4, 6, 1, 4, 2, 7, 5, 4, 5, 9, 5, 5, 5, 2, 4, 1, 8, 7, 9, 6, 8, 1, 5, 9, 9, 9, 9, 1, 3,
3, 7, 2, 5, 6, 1, 5, 8

Fashion 5, 6, 8, 2, 5, 2, 5, 1, 7, 3, 5, 5, 4, 3, 3, 5, 6, 3, 4, 3, 4, 6, 4, 6, 3, 6, 5, 4, 6,
5, 5, 3, 4, 4, 4, 3, 6, 2, 3, 4, 4, 4, 5, 2, 3, 4, 5, 5, 6, 4, 5, 5, 6, 3, 4, 4, 5, 8, 4, 5, 6, 4,
2, 5, 3, 6, 2, 3, 2, 5, 3, 5, 4, 4, 5, 4, 6, 6, 5, 8, 2, 6, 5, 6, 4, 7, 4, 5, 5, 3, 6, 6, 4, 5, 5,
4, 4, 4, 4, 3, 5, 3, 3, 5, 4, 4, 5, 7, 6, 6, 4, 4, 5, 5, 2, 2, 7, 5, 1, 6, 5, 4, 7, 7, 6, 5, 6, 3,
2, 4, 5, 3, 9, 4, 4, 6, 6, 6, 9, 4, 4, 3, 3, 3, 2, 4, 4, 5, 4, 6, 6, 3, 3, 3, 5, 4, 4, 5, 4, 6, 3,
4, 6, 3, 4, 6, 4, 5, 4, 3, 3, 6, 4, 3, 3, 4, 3, 1, 4, 5, 5, 6, 2, 6, 6, 5, 5, 3, 9, 3, 3, 1, 1, 4,
3, 3, 3, 7, 6, 6, 4, 4, 1, 3, 5, 5, 4, 6, 4, 5, 5, 4, 6, 5, 6, 2, 4, 4, 3, 8, 5, 3, 6, 5, 3, 5, 3,
3, 5, 3, 2, 2, 3, 5, 5, 5, 1, 6, 5, 1, 5, 4, 4, 3, 6, 4, 4, 5, 5, 4, 5, 5, 3, 7, 4, 7, 6, 1, 5, 4,
4, 4, 3, 3, 5, 4, 7, 4, 6, 7, 6, 4, 6, 3, 4, 4, 2, 6, 3, 6, 5, 2, 2, 5, 3, 4, 4, 4, 3, 2, 4, 6, 4,
6, 5, 6, 2, 4, 2, 3, 6, 2, 6, 5, 6, 4, 4, 4, 6, 5, 5, 1, 4, 5, 5, 4, 4, 2, 3, 6, 5, 5, 2, 2, 5, 2,
5, 4, 3, 8, 3, 6, 3, 4, 3, 6, 4, 3, 4, 2, 5, 6, 4, 5, 5, 6, 4, 6, 5, 4, 3, 8, 2, 5, 5, 3, 2, 3, 5,
4, 3, 4, 3, 5, 2, 3, 1, 4, 4, 6, 6, 6, 6, 6, 6, 4, 4, 3, 4, 4, 3, 3, 5, 4, 4, 5, 4, 6, 8, 3, 3, 5,
4, 5, 4, 5, 4, 4, 6, 6

Gamble 5, 4, 7, 4, 5, 4, 3, 3, 3, 6, 2, 6, 5, 4, 5, 5, 2, 7, 6, 6, 6, 4, 2, 8, 4, 4, 3, 3, 4,
5, 4, 3, 4, 6, 5, 4, 8, 9, 7, 3, 6, 4, 6, 6, 5, 3, 4, 6, 5, 4, 5, 3, 7, 3, 8, 5, 7, 5, 3, 4, 7, 4,
4, 5, 4, 6, 1, 4, 4, 9, 5, 4, 6, 4, 4, 5, 5, 5, 6, 6, 4, 4, 8, 7, 4, 5, 3, 3, 5, 3, 4, 5, 3, 5, 6,
6, 6, 5, 7, 4, 2, 3, 7, 6, 6, 4, 8, 4, 6, 3, 4, 4, 5, 8, 3, 3, 4, 5, 5, 5, 4, 5, 1, 6, 8, 5, 6, 4,
4, 6, 5, 7, 6, 5, 6, 7, 7, 6, 6, 4, 7, 6, 6, 5, 7, 6, 6, 5, 2, 5, 5, 4, 3, 3, 4, 6, 4, 4, 4, 3, 5,
2, 6, 4, 4, 6, 7, 6, 5, 4, 4, 7, 4, 7, 8, 5, 4, 5, 5, 3, 2, 4, 3, 6, 2, 3, 6, 5, 2, 4, 6, 2, 2, 1,
4, 3, 5, 5, 4, 6, 2, 3, 3, 5, 3, 6, 5, 6, 5, 3, 4, 6, 5, 5, 5, 3, 7, 7, 2, 6, 4, 2, 7, 2, 6, 3, 6,
2, 5, 3, 7, 3, 4, 2, 3, 7, 3, 6, 3, 7, 2, 4, 4, 4, 8, 3, 4, 4, 3, 1, 4, 7, 5, 4, 5, 8, 4, 6, 4, 6,
4, 4, 5, 4, 2, 6, 5, 5, 7, 2, 7, 4, 5, 6, 5, 3, 3, 2, 5, 3, 6, 1, 5, 6, 6, 5, 8, 6, 6, 5, 6, 4, 4,
6, 4, 7, 4, 4, 5, 4, 3, 7, 8, 1, 4, 4, 7, 4, 5, 4, 5, 1, 3, 4, 4, 4, 5, 3, 5, 5, 4, 7, 6, 3, 6, 4,
6, 5, 3, 4, 5, 7, 4, 5, 4, 5, 3, 7, 6, 4, 6, 4, 8, 3, 4, 2, 5, 5, 5, 4, 5, 6, 3, 5, 8, 4, 5, 2, 5,
4, 5, 6, 3, 3, 3, 1, 5, 3, 4, 7, 4, 4, 6, 4, 3, 5, 3, 4, 4, 8, 6, 7, 4, 6, 4, 5, 4, 6, 8, 7, 2, 5,
4, 7, 4, 5, 6, 4, 6, 6
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Ozone 4, 7, 7, 3, 4, 2, 3, 4, 2, 5, 4, 6, 2, 3, 6, 3, 7, 8, 7, 5, 5, 5, 5, 8, 5, 5, 5, 1, 4, 6,
6, 9, 2, 6, 3, 4, 6, 6, 7, 5, 6, 6, 6, 4, 3, 5, 6, 5, 5, 3, 5, 4, 5, 6, 8, 3, 8, 5, 6, 4, 4, 4, 3,
7, 8, 5, 3, 6, 6, 8, 6, 4, 5, 6, 4, 3, 6, 6, 3, 5, 5, 6, 7, 6, 6, 7, 3, 4, 5, 5, 6, 5, 3, 3, 5, 6,
3, 4, 6, 5, 5, 6, 6, 5, 9, 8, 5, 5, 4, 8, 4, 3, 5, 5, 4, 6, 8, 8, 4, 7, 5, 9, 2, 2, 5, 2, 7, 7, 2,
4, 4, 6, 3, 7, 7, 4, 3, 6, 3, 6, 6, 7, 3, 5, 5, 4, 3, 6, 4, 5, 6, 5, 5, 4, 7, 5, 5, 2, 4, 7, 5, 5,
5, 4, 6, 5, 5, 5, 7, 5, 3, 6, 5, 6, 6, 4, 4, 2, 6, 6, 4, 8, 3, 5, 3, 3, 5, 5, 6, 5, 7, 4, 1, 3, 4,
6, 4, 3, 8, 5, 2, 7, 1, 5, 3, 7, 5, 4, 3, 7, 4, 2, 8, 7, 4, 3, 6, 7, 6, 6, 7, 9, 9, 3, 7, 6, 6, 4,
5, 6, 6, 4, 6, 5, 7, 5, 4, 6, 5, 6, 5, 5, 5, 4, 4, 6, 9, 3, 3, 2, 5, 5, 5, 7, 3, 6, 4, 5, 7, 5, 4,
5, 5, 6, 6, 7, 4, 4, 4, 4, 2, 7, 4, 5, 4, 4, 5, 3, 6, 4, 7, 6, 4, 6, 5, 4, 5, 5, 4, 5, 7, 1, 3, 8,
6, 7, 5, 5, 5, 4, 5, 6, 5, 3, 5, 2, 3, 3, 4, 3, 3, 5, 5, 7, 7, 5, 6, 6, 6, 4, 7, 5, 7, 5, 8, 7, 7,
4, 5, 6, 6, 4, 9, 8, 5, 6, 6, 4, 4, 5, 4, 6, 3, 5, 4, 5, 8, 6, 6, 5, 3, 6, 7, 4, 7, 5, 4, 3, 6, 4,
6, 6, 4, 5, 5, 3, 7, 4, 6, 7, 3, 5, 6, 4, 9, 6, 3, 5, 7, 4, 5, 3, 7, 3, 3, 6, 6, 4, 6, 6, 6, 5, 5,
9, 4, 3, 6, 3, 4, 6

Pollution 5, 7, 7, 4, 5, 1, 3, 6, 3, 5, 5, 6, 2, 2, 7, 2, 6, 7, 7, 5, 5, 5, 6, 8, 6, 4, 5, 1, 4,
6, 6, 9, 3, 6, 3, 6, 4, 6, 8, 6, 6, 5, 6, 5, 3, 3, 8, 7, 7, 3, 4, 5, 5, 6, 8, 3, 8, 5, 6, 5, 4, 6,
5, 7, 7, 6, 4, 6, 5, 8, 5, 6, 6, 6, 4, 4, 5, 6, 5, 6, 5, 6, 8, 5, 5, 6, 5, 4, 5, 6, 5, 6, 3, 4, 6,
6, 5, 6, 6, 5, 4, 6, 8, 4, 9, 7, 6, 4, 5, 9, 4, 4, 4, 5, 4, 5, 7, 8, 3, 7, 7, 7, 2, 2, 5, 3, 5, 7,
4, 5, 5, 7, 5, 5, 6, 5, 4, 7, 4, 7, 7, 7, 4, 5, 5, 5, 3, 6, 5, 5, 7, 6, 4, 6, 7, 4, 6, 4, 4, 7, 6,
6, 7, 4, 6, 5, 6, 5, 6, 5, 4, 6, 6, 5, 6, 5, 6, 3, 6, 6, 5, 7, 4, 3, 3, 4, 6, 5, 5, 6, 6, 5, 2, 4,
4, 6, 2, 3, 6, 5, 4, 6, 2, 5, 2, 8, 4, 5, 4, 7, 5, 1, 7, 5, 6, 4, 5, 7, 7, 5, 6, 8, 8, 5, 7, 5, 5,
6, 6, 5, 6, 4, 7, 5, 6, 5, 4, 5, 5, 6, 7, 5, 6, 4, 6, 4, 8, 4, 4, 2, 4, 5, 6, 6, 4, 5, 6, 4, 6, 6,
4, 5, 4, 7, 6, 7, 5, 5, 5, 4, 2, 6, 3, 5, 3, 4, 5, 3, 5, 4, 7, 7, 4, 6, 5, 5, 4, 6, 4, 6, 6, 1, 4,
7, 5, 8, 3, 6, 4, 4, 4, 6, 7, 6, 5, 3, 3, 5, 4, 4, 4, 6, 5, 7, 6, 4, 7, 6, 6, 4, 8, 4, 8, 6, 7, 8,
8, 4, 5, 4, 6, 5, 7, 7, 5, 6, 6, 5, 6, 6, 4, 6, 6, 5, 4, 7, 6, 6, 5, 6, 3, 4, 9, 5, 6, 5, 3, 5, 6,
4, 6, 4, 4, 6, 6, 3, 7, 5, 5, 7, 4, 6, 6, 4, 9, 6, 5, 6, 7, 4, 5, 3, 5, 4, 3, 7, 6, 6, 6, 6, 5, 6,
6, 9, 6, 3, 6, 3, 5, 7

Exercise 7.23. The marketing study also included 11 more questions, the
responses to which we’ve tabulated below, again using a nine-point Likert
scale. Find the best prediction model for Attitude using the answers to all
15 questions.

Stop. This is insane. Fifteen questions leads to tens of thousand of 
possible models. There has to be a better way than simple trial and error
to find the best one. There is. As always, it consists of letting the com-
puter do the work. Figure 7.7 is a display of XLStat’s Linear Regression
menu after clicking the “More” button and placing a check beside “Model
Selection.”

Note that I’ve chosen “Best Model” as the method, “Adjusted R2” as
the criterion, “3” as the minimum number of predictors, and “5” as the
maximum. You may wish to experiment with other choices.

Exercise 7.23 con’t. Here are the data. Find the best-fitting model for
predicting a prospective purchaser.

Today 4, 4, 4, 5, 4, 4, 5, 5, 6, 5, 6, 4, 2, 5, 6, 2, 5, 6, 6, 6, 7, 6, 5, 4, 6, 7, 2, 6, 2, 6,
4, 4, 5, 6, 4, 6, 5, 5, 4, 4, 2, 6, 3, 5, 5, 4, 4, 5, 6, 2, 4, 4, 4, 2, 2, 7, 4, 2, 5, 8, 7, 6, 5,
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6, 6, 4, 6, 3, 6, 5, 3, 2, 7, 3, 4, 6, 4, 3, 7, 5, 5, 5, 4, 3, 4, 5, 5, 4, 3, 5, 5, 5, 6, 4, 5, 3,
7, 6, 6, 3, 5, 4, 6, 5, 3, 6, 5, 9, 2, 6, 3, 6, 7, 4, 3, 1, 6, 5, 3, 6, 4, 5, 4, 6, 4, 2, 5, 1, 1,
4, 1, 2, 5, 4, 4, 4, 5, 3, 6, 6, 3, 5, 2, 4, 2, 4, 3, 6, 3, 7, 5, 4, 3, 4, 4, 5, 3, 4, 6, 9, 3, 2,
5, 5, 6, 6, 4, 7, 6, 5, 4, 7, 5, 4, 4, 4, 5, 6, 4, 4, 1, 2, 7, 7, 3, 4, 6, 6, 5, 3, 3, 5, 6, 5, 4,
4, 3, 6, 3, 3, 8, 2, 5, 4, 3, 5, 5, 2, 4, 5, 7, 4, 5, 3, 4, 3, 5, 4, 5, 6, 4, 5, 4, 4, 6, 3, 4, 5,
7, 3, 4, 4, 2, 5, 5, 6, 6, 5, 4, 6, 3, 4, 4, 2, 4, 5, 5, 5, 5, 5, 4, 3, 6, 3, 5, 1, 4, 6, 3, 6, 5,
4, 3, 4, 4, 5, 5, 6, 5, 5, 2, 5, 3, 3, 6, 8, 2, 4, 7, 4, 3, 4, 3, 3, 4, 3, 7, 4, 8, 7, 5, 2, 5, 2,
2, 7, 5, 4, 4, 4, 7, 5, 5, 3, 5, 4, 5, 6, 5, 5, 4, 7, 4, 4, 3, 6, 5, 6, 4, 5, 7, 6, 2, 6, 7, 7, 7,
1, 2, 6, 6, 3, 4, 6, 5, 4, 2, 6, 6, 6, 3, 3, 7, 2, 4, 4, 4, 4, 6, 4, 4, 6, 5, 6, 3, 3, 8, 3, 5, 5,
3, 6, 5, 4, 5, 5, 4, 3, 2, 4, 5, 1, 5, 5, 6, 5, 4, 5, 4, 3, 4, 3, 4, 6, 5, 6, 3, 6, 2, 5, 5, 6, 3,
6, 7, 5, 5, 4, 4, 4

Coupons 4, 2, 3, 6, 5, 5, 6, 3, 5, 5, 6, 4, 3, 4, 6, 4, 5, 6, 4, 5, 7, 5, 4, 5, 5, 6, 1, 5, 3,
7, 5, 5, 4, 5, 3, 6, 6, 5, 3, 4, 4, 7, 4, 6, 5, 5, 3, 4, 7, 1, 4, 5, 6, 3, 3, 6, 5, 3, 6, 5, 7, 7,
4, 5, 5, 4, 6, 3, 6, 4, 3, 3, 7, 2, 5, 5, 4, 4, 8, 4, 4, 4, 5, 4, 4, 7, 5, 4, 3, 7, 5, 5, 4, 6, 6,
4, 6, 5, 6, 3, 4, 4, 7, 4, 4, 6, 6, 9, 4, 6, 2, 7, 7, 4, 4, 3, 4, 3, 3, 4, 5, 4, 4, 6, 4, 2, 4, 1,
2, 5, 2, 3, 5, 3, 3, 5, 5, 5, 5, 6, 3, 3, 3, 4, 3, 3, 4, 6, 3, 5, 4, 3, 4, 5, 4, 4, 3, 5, 5, 9, 3,
4, 6, 6, 6, 6, 4, 6, 5, 6, 3, 6, 5, 2, 5, 4, 5, 5, 4, 5, 2, 3, 5, 7, 4, 4, 6, 6, 3, 2, 3, 5, 8, 6,
5, 5, 5, 7, 5, 4, 5, 2, 4, 4, 2, 5, 3, 2, 2, 6, 7, 3, 5, 3, 4, 3, 5, 4, 5, 5, 4, 5, 4, 4, 6, 3, 3,
5, 7, 4, 6, 5, 3, 5, 5, 6, 4, 6, 3, 5, 2, 5, 3, 2, 4, 5, 5, 4, 4, 5, 4, 5, 5, 5, 4, 3, 4, 5, 5, 4,
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5, 5, 4, 4, 4, 4, 6, 6, 4, 5, 2, 4, 2, 3, 6, 8, 1, 5, 6, 5, 3, 5, 3, 6, 5, 5, 6, 4, 7, 7, 6, 3, 3,
3, 3, 5, 5, 5, 5, 6, 7, 4, 5, 3, 4, 3, 3, 6, 4, 3, 5, 8, 6, 5, 4, 8, 5, 7, 3, 5, 6, 5, 1, 7, 5, 6,
5, 1, 2, 5, 5, 3, 3, 5, 5, 6, 4, 5, 5, 7, 4, 5, 5, 3, 4, 4, 3, 4, 6, 5, 3, 6, 7, 5, 4, 2, 8, 2, 6,
5, 2, 5, 6, 5, 4, 4, 5, 5, 4, 2, 4, 3, 6, 6, 7, 5, 4, 5, 3, 4, 5, 4, 4, 6, 5, 7, 4, 7, 4, 5, 5, 7,
2, 6, 7, 5, 5, 3, 5, 4

IntRates 6, 1, 3, 6, 6, 2, 6, 3, 5, 5, 5, 4, 3, 3, 4, 4, 6, 6, 5, 3, 6, 6, 3, 6, 5, 6, 2, 6, 3,
6, 4, 4, 4, 5, 4, 6, 6, 6, 3, 5, 4, 7, 4, 7, 5, 7, 4, 5, 7, 2, 5, 6, 6, 4, 3, 7, 4, 3, 7, 7, 7, 6,
5, 6, 5, 4, 6, 4, 6, 4, 4, 4, 7, 3, 5, 5, 3, 4, 9, 3, 5, 3, 5, 6, 4, 7, 5, 5, 4, 5, 6, 4, 5, 5, 7,
5, 6, 5, 7, 5, 4, 5, 7, 5, 4, 7, 5, 9, 4, 7, 3, 7, 6, 5, 5, 4, 3, 4, 3, 3, 5, 3, 5, 5, 4, 3, 5, 4,
4, 4, 2, 3, 5, 3, 3, 4, 5, 6, 6, 4, 4, 4, 4, 5, 3, 4, 4, 6, 3, 5, 4, 4, 4, 5, 3, 5, 3, 6, 5, 9, 4,
5, 6, 6, 5, 6, 4, 7, 5, 7, 3, 6, 5, 2, 4, 4, 5, 5, 5, 5, 2, 3, 5, 8, 4, 3, 6, 7, 4, 4, 5, 6, 7, 6,
6, 6, 6, 6, 6, 4, 5, 2, 5, 3, 3, 6, 3, 2, 2, 7, 6, 4, 4, 3, 5, 4, 6, 2, 6, 5, 4, 7, 6, 3, 6, 4, 3,
5, 8, 5, 6, 5, 4, 6, 4, 5, 5, 7, 4, 4, 4, 7, 3, 2, 5, 5, 5, 5, 4, 5, 3, 4, 4, 5, 5, 3, 5, 6, 5, 5,
4, 7, 3, 3, 3, 4, 6, 5, 4, 6, 2, 4, 3, 3, 8, 9, 1, 7, 5, 6, 4, 4, 6, 7, 5, 5, 6, 4, 8, 7, 6, 5, 4,
4, 4, 4, 6, 5, 6, 6, 8, 5, 4, 3, 5, 3, 4, 7, 3, 2, 5, 8, 5, 5, 5, 8, 5, 8, 3, 6, 7, 5, 3, 8, 6, 5,
5, 1, 3, 4, 5, 5, 3, 4, 6, 4, 5, 4, 5, 7, 5, 5, 5, 3, 4, 5, 3, 5, 7, 7, 4, 5, 6, 4, 5, 1, 6, 3, 6,
5, 3, 5, 5, 5, 4, 5, 4, 4, 4, 2, 6, 3, 6, 5, 6, 5, 4, 5, 2, 5, 5, 4, 3, 6, 4, 8, 3, 7, 4, 5, 4, 7,
1, 7, 7, 6, 5, 4, 6, 4

Selfconf 6, 7, 4, 6, 6, 6, 6, 3, 5, 6, 4, 1, 5, 5, 7, 3, 4, 6, 7, 5, 5, 4, 6, 4, 8, 5, 6, 5, 3,
5, 4, 4, 5, 8, 3, 5, 6, 3, 6, 5, 4, 7, 5, 2, 6, 5, 5, 6, 3, 5, 5, 4, 8, 6, 4, 7, 4, 5, 3, 4, 5, 3,
5, 7, 8, 6, 6, 3, 6, 6, 5, 3, 4, 5, 4, 6, 4, 6, 5, 5, 4, 5, 6, 7, 5, 6, 4, 6, 4, 3, 4, 2, 4, 1, 5,
5, 5, 6, 5, 5, 4, 4, 3, 7, 5, 5, 5, 5, 5, 4, 3, 6, 3, 5, 3, 4, 7, 6, 5, 5, 4, 3, 5, 3, 6, 5, 4, 5,
2, 5, 5, 5, 3, 6, 7, 5, 4, 6, 5, 6, 5, 3, 6, 5, 3, 6, 6, 5, 6, 6, 1, 4, 4, 9, 7, 5, 8, 7, 4, 3, 3,
6, 6, 8, 3, 7, 6, 4, 7, 4, 6, 6, 5, 6, 3, 5, 5, 5, 3, 5, 6, 6, 6, 4, 4, 5, 4, 5, 5, 3, 6, 3, 6, 4,
4, 5, 3, 6, 6, 5, 1, 4, 6, 4, 6, 4, 3, 6, 6, 5, 3, 5, 6, 6, 5, 4, 6, 5, 3, 5, 5, 5, 7, 4, 7, 3, 5,
2, 3, 2, 3, 4, 4, 5, 7, 3, 6, 6, 6, 7, 4, 3, 4, 4, 5, 2, 8, 5, 2, 5, 6, 7, 1, 4, 5, 2, 7, 6, 6, 3,
4, 2, 4, 6, 6, 3, 2, 6, 3, 4, 5, 5, 5, 4, 3, 6, 3, 4, 4, 5, 7, 7, 5, 3, 2, 6, 4, 1, 5, 4, 5, 5, 4,
5, 7, 3, 6, 6, 8, 2, 5, 6, 4, 5, 7, 3, 5, 6, 6, 4, 4, 6, 4, 4, 6, 4, 4, 4, 7, 6, 4, 6, 3, 4, 5, 3,
4, 6, 6, 4, 5, 7, 6, 6, 4, 4, 4, 4, 6, 5, 7, 4, 7, 4, 8, 6, 6, 6, 7, 4, 3, 7, 4, 3, 4, 4, 6, 6, 5,
5, 3, 3, 5, 5, 4, 4, 5, 6, 4, 8, 2, 3, 3, 2, 6, 7, 2, 7, 7, 4, 6, 6, 5, 4, 3, 3, 7, 6, 5, 5, 1, 4,
5, 8, 5, 6, 3, 5, 8, 4

Leader 5, 6, 6, 6, 7, 7, 6, 5, 6, 7, 6, 3, 5, 6, 7, 4, 4, 7, 6, 6, 6, 5, 6, 5, 9, 5, 8, 6, 3, 5,
5, 6, 5, 9, 4, 4, 7, 5, 7, 6, 5, 6, 7, 3, 7, 6, 7, 7, 4, 8, 7, 6, 8, 6, 5, 7, 5, 5, 5, 5, 6, 4, 6,
8, 8, 5, 6, 6, 6, 7, 5, 4, 5, 6, 4, 6, 6, 6, 6, 6, 4, 6, 6, 8, 5, 6, 6, 5, 6, 5, 4, 3, 5, 3, 7, 5,
6, 6, 6, 6, 4, 5, 5, 7, 7, 6, 6, 6, 6, 5, 3, 8, 5, 6, 3, 5, 7, 6, 4, 6, 4, 4, 6, 4, 7, 5, 4, 7, 4,
6, 5, 5, 5, 8, 7, 6, 6, 6, 5, 6, 5, 3, 7, 4, 4, 6, 7, 5, 5, 6, 3, 5, 5, 9, 8, 8, 7, 6, 5, 3, 4, 8,
6, 9, 5, 6, 5, 5, 6, 6, 9, 5, 6, 5, 3, 7, 7, 5, 5, 6, 7, 7, 7, 5, 4, 6, 6, 6, 7, 5, 6, 4, 8, 4, 5,
6, 3, 6, 7, 5, 1, 6, 5, 6, 7, 5, 4, 6, 7, 5, 3, 5, 6, 7, 6, 5, 7, 7, 5, 6, 5, 5, 7, 5, 7, 5, 7, 2,
6, 3, 5, 5, 6, 6, 7, 3, 9, 7, 6, 8, 5, 4, 5, 4, 5, 4, 9, 6, 4, 6, 5, 8, 3, 5, 5, 4, 6, 6, 7, 4, 5,
4, 5, 7, 6, 3, 1, 7, 3, 5, 5, 6, 6, 5, 3, 7, 3, 5, 4, 5, 7, 8, 4, 3, 3, 8, 5, 2, 6, 5, 7, 5, 3, 6,
8, 3, 8, 5, 8, 2, 6, 6, 5, 6, 9, 3, 6, 7, 6, 5, 3, 5, 5, 6, 6, 5, 5, 4, 7, 7, 4, 5, 4, 5, 5, 3, 7,
6, 6, 4, 7, 7, 6, 6, 6, 6, 5, 4, 7, 5, 8, 4, 7, 6, 8, 8, 7, 6, 8, 5, 5, 7, 6, 4, 6, 6, 7, 8, 7, 5,
3, 4, 6, 7, 6, 4, 4, 7, 6, 8, 3, 4, 4, 4, 7, 9, 4, 8, 7, 4, 5, 7, 5, 5, 4, 5, 7, 8, 7, 6, 1, 4, 6,
7, 5, 7, 4, 7, 7, 6

Trip 4, 5, 6, 4, 5, 2, 3, 5, 4, 2, 3, 6, 4, 3, 2, 7, 1, 6, 9, 6, 7, 4, 1, 6, 3, 3, 4, 3, 4, 5, 5,
3, 6, 4, 4, 3, 4, 6, 7, 2, 4, 4, 3, 7, 4, 3, 4, 3, 3, 5, 6, 2, 5, 1, 7, 2, 5, 4, 4, 2, 3, 3, 3, 5,
3, 4, 4, 7, 5, 6, 5, 5, 5, 2, 2, 7, 4, 2, 5, 6, 3, 4, 4, 4, 4, 6, 5, 3, 5, 3, 4, 4, 3, 3, 5, 4, 4,
2, 4, 3, 5, 5, 6, 4, 3, 4, 4, 5, 4, 6, 4, 3, 2, 5, 4, 5, 4, 6, 4, 5, 6, 5, 3, 4, 6, 4, 5, 5, 3, 3,
5, 6, 4, 2, 5, 5, 3, 6, 5, 5, 7, 3, 4, 4, 4, 4, 4, 5, 5, 4, 5, 2, 3, 2, 4, 6, 4, 4, 2, 2, 2, 5, 6,
3, 4, 7, 6, 3, 5, 5, 3, 3, 4, 3, 5, 4, 4, 4, 4, 4, 3, 7, 4, 4, 3, 3, 2, 4, 6, 4, 6, 1, 2, 1, 2, 4,
5, 5, 5, 3, 2, 1, 4, 4, 4, 3, 3, 5, 4, 7, 4, 8, 5, 4, 5, 4, 7, 6, 2, 6, 4, 6, 5, 4, 3, 6, 4, 3, 4,
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4, 5, 4, 3, 4, 3, 3, 6, 6, 5, 5, 3, 4, 1, 3, 4, 2, 4, 4, 1, 2, 4, 5, 3, 4, 4, 5, 5, 4, 3, 5, 6, 5,
5, 3, 4, 3, 4, 6, 6, 6, 7, 6, 5, 3, 6, 5, 5, 5, 3, 5, 4, 3, 2, 4, 5, 3, 6, 3, 3, 4, 5, 4, 2, 2, 2,
5, 4, 4, 4, 6, 5, 7, 7, 2, 5, 2, 2, 3, 4, 5, 2, 2, 2, 1, 2, 6, 4, 2, 6, 3, 4, 5, 5, 3, 4, 5, 4, 6,
4, 1, 5, 6, 4, 2, 3, 2, 2, 6, 5, 4, 2, 7, 7, 4, 7, 7, 3, 3, 5, 5, 3, 4, 2, 4, 4, 4, 2, 3, 4, 5, 4,
4, 4, 5, 4, 5, 5, 3, 3, 5, 3, 5, 4, 3, 5, 5, 6, 5, 4, 6, 7, 5, 5, 8, 1, 4, 7, 5, 4, 7, 4, 2, 4, 2,
2, 6, 6, 1, 5, 2

Change 3, 5, 5, 4, 4, 2, 5, 6, 5, 3, 3, 6, 4, 4, 3, 8, 2, 7, 9, 5, 8, 3, 2, 6, 4, 3, 4, 4, 4,
5, 6, 3, 6, 4, 4, 4, 5, 7, 7, 3, 4, 5, 4, 7, 4, 3, 4, 4, 4, 5, 6, 2, 4, 1, 6, 2, 4, 4, 4, 3, 4, 4,
4, 6, 3, 4, 4, 8, 6, 7, 5, 5, 4, 1, 3, 9, 4, 2, 4, 7, 3, 4, 4, 4, 5, 6, 6, 3, 5, 2, 4, 3, 3, 4, 5,
5, 4, 3, 5, 3, 4, 5, 6, 4, 4, 5, 5, 6, 4, 5, 4, 3, 2, 6, 5, 5, 5, 7, 5, 4, 6, 4, 4, 4, 6, 4, 5, 4,
4, 4, 6, 6, 4, 2, 5, 5, 3, 6, 6, 5, 5, 3, 4, 5, 5, 5, 5, 6, 5, 5, 6, 3, 3, 2, 4, 6, 4, 4, 3, 3, 2,
4, 6, 3, 3, 7, 7, 3, 6, 6, 3, 3, 6, 3, 5, 4, 4, 6, 4, 3, 3, 6, 3, 4, 3, 3, 2, 5, 7, 5, 6, 1, 1, 2,
2, 4, 5, 5, 5, 3, 2, 1, 4, 5, 5, 4, 4, 6, 5, 7, 4, 8, 6, 3, 5, 3, 6, 6, 3, 7, 5, 7, 5, 5, 3, 7, 3,
4, 4, 4, 4, 4, 3, 4, 3, 3, 7, 7, 5, 5, 3, 3, 1, 3, 4, 2, 4, 4, 1, 3, 4, 5, 4, 5, 5, 6, 5, 5, 4, 5,
7, 5, 5, 3, 5, 5, 6, 6, 6, 5, 8, 6, 4, 2, 6, 5, 5, 5, 3, 6, 4, 3, 3, 5, 5, 3, 6, 4, 3, 5, 5, 3, 3,
2, 2, 5, 4, 4, 5, 7, 6, 7, 7, 2, 5, 3, 3, 3, 4, 5, 2, 2, 3, 1, 1, 6, 4, 2, 6, 3, 4, 4, 6, 4, 4, 5,
3, 7, 4, 3, 5, 6, 4, 3, 2, 3, 2, 6, 7, 5, 3, 7, 7, 5, 7, 7, 5, 3, 5, 6, 4, 5, 3, 4, 5, 3, 2, 4, 4,
5, 4, 4, 5, 5, 5, 5, 6, 3, 3, 5, 3, 5, 4, 3, 5, 5, 6, 5, 3, 6, 8, 6, 5, 7, 1, 4, 7, 6, 4, 6, 3, 2,
4, 2, 3, 6, 6, 1, 6, 4

Pioneer 3, 6, 5, 5, 4, 4, 7, 7, 5, 2, 6, 5, 5, 3, 3, 9, 3, 5, 7, 2, 6, 3, 3, 5, 5, 4, 5, 6, 2,
4, 6, 2, 6, 3, 6, 5, 4, 6, 5, 3, 4, 5, 5, 7, 4, 2, 4, 4, 7, 5, 6, 3, 4, 2, 6, 6, 4, 3, 4, 2, 5, 4,
6, 5, 5, 4, 4, 7, 5, 7, 6, 6, 5, 1, 4, 7, 4, 2, 7, 6, 5, 7, 5, 3, 4, 5, 5, 2, 3, 4, 6, 4, 4, 5, 5,
6, 4, 5, 6, 4, 5, 4, 7, 4, 5, 6, 4, 7, 3, 7, 4, 4, 4, 6, 5, 5, 4, 6, 8, 5, 5, 4, 3, 6, 7, 5, 4, 5,
4, 6, 6, 4, 6, 5, 6, 8, 3, 4, 6, 6, 5, 3, 5, 4, 6, 5, 4, 3, 5, 6, 6, 5, 6, 4, 4, 6, 5, 3, 3, 3, 4,
6, 4, 4, 4, 6, 6, 4, 4, 4, 5, 3, 7, 2, 3, 5, 6, 4, 4, 6, 4, 5, 4, 5, 3, 6, 3, 7, 5, 7, 7, 5, 3, 3,
3, 4, 4, 4, 4, 5, 4, 2, 5, 4, 6, 5, 6, 3, 6, 7, 4, 8, 7, 4, 6, 5, 3, 5, 3, 4, 4, 7, 6, 5, 5, 5, 3,
4, 3, 4, 5, 5, 3, 5, 3, 3, 7, 7, 6, 6, 5, 4, 1, 4, 5, 3, 5, 4, 5, 4, 5, 6, 5, 5, 5, 5, 6, 4, 6, 4,
6, 7, 7, 4, 6, 3, 5, 5, 5, 7, 6, 3, 5, 4, 5, 5, 5, 4, 5, 6, 6, 2, 4, 5, 6, 4, 6, 4, 4, 8, 4, 6, 3,
5, 2, 8, 6, 4, 4, 4, 5, 5, 6, 4, 5, 1, 3, 6, 3, 6, 3, 4, 4, 5, 3, 5, 6, 4, 6, 3, 6, 5, 6, 3, 5, 7,
4, 7, 4, 4, 5, 5, 4, 4, 4, 1, 1, 5, 6, 5, 3, 5, 6, 6, 7, 7, 5, 4, 4, 5, 7, 6, 4, 4, 7, 3, 3, 4, 3,
5, 4, 4, 5, 4, 5, 4, 6, 2, 3, 4, 4, 5, 3, 4, 5, 4, 4, 4, 4, 6, 7, 5, 6, 5, 5, 5, 5, 5, 6, 6, 5, 5,
4, 5, 4, 9, 8, 2, 7, 5

Work 3, 4, 5, 5, 7, 7, 5, 4, 5, 7, 5, 1, 5, 8, 2, 7, 4, 7, 3, 6, 6, 6, 5, 5, 6, 4, 5, 5, 5, 4,
5, 3, 8, 7, 4, 4, 7, 6, 8, 4, 4, 5, 5, 6, 3, 6, 6, 5, 7, 9, 4, 5, 6, 4, 3, 6, 8, 3, 5, 8, 5, 5, 7,
5, 6, 3, 5, 6, 5, 6, 6, 5, 8, 5, 6, 5, 5, 6, 7, 5, 5, 3, 7, 5, 7, 6, 4, 6, 4, 1, 7, 3, 6, 5, 7, 5,
4, 6, 5, 5, 4, 6, 6, 6, 7, 5, 5, 6, 3, 7, 3, 7, 5, 6, 7, 6, 3, 8, 6, 5, 7, 6, 7, 7, 6, 3, 8, 5, 3,
8, 7, 6, 7, 6, 8, 9, 4, 6, 4, 7, 7, 3, 7, 6, 4, 5, 5, 4, 7, 7, 9, 6, 7, 5, 5, 6, 7, 6, 7, 7, 5, 5,
5, 4, 8, 7, 7, 6, 4, 4, 6, 5, 7, 4, 8, 4, 5, 5, 9, 4, 3, 5, 3, 6, 4, 7, 5, 6, 4, 6, 9, 4, 4, 7, 6,
7, 8, 4, 5, 5, 5, 4, 5, 5, 7, 5, 6, 4, 4, 6, 5, 4, 5, 4, 7, 3, 4, 9, 5, 5, 4, 6, 6, 7, 4, 5, 5, 4,
5, 4, 5, 7, 3, 6, 5, 5, 7, 7, 3, 4, 3, 6, 5, 3, 1, 3, 6, 5, 7, 4, 7, 6, 6, 5, 8, 7, 6, 4, 7, 5, 6,
5, 4, 6, 4, 5, 5, 5, 6, 8, 6, 6, 8, 1, 2, 5, 7, 2, 4, 6, 8, 5, 4, 3, 6, 5, 6, 2, 6, 5, 8, 7, 4, 5,
6, 9, 4, 4, 5, 6, 3, 5, 6, 5, 1, 5, 5, 9, 8, 5, 5, 6, 4, 7, 4, 6, 5, 4, 3, 4, 8, 7, 9, 4, 3, 8, 8,
6, 7, 3, 5, 5, 5, 4, 6, 3, 3, 4, 5, 7, 8, 8, 4, 6, 7, 5, 4, 5, 5, 3, 5, 6, 6, 4, 6, 1, 6, 5, 4, 6,
6, 7, 4, 6, 5, 5, 8, 6, 5, 3, 9, 4, 6, 3, 5, 5, 6, 5, 9, 7, 6, 4, 7, 8, 4, 5, 7, 5, 5, 3, 8, 6, 5,
6, 7, 5, 8, 4, 4, 5

Mind 1, 4, 6, 3, 3, 5, 4, 4, 6, 3, 1, 4, 6, 6, 5, 5, 2, 6, 3, 1, 6, 2, 5, 4, 6, 6, 6, 4, 3, 6,
2, 6, 6, 4, 4, 5, 9, 6, 6, 2, 4, 6, 7, 5, 3, 3, 6, 7, 7, 8, 6, 4, 5, 2, 3, 5, 5, 2, 4, 5, 3, 4, 6,
5, 5, 5, 4, 6, 4, 7, 5, 4, 5, 3, 5, 7, 3, 5, 6, 3, 3, 4, 8, 5, 1, 5, 2, 2, 3, 5, 6, 6, 3, 7, 3, 6,
5, 4, 4, 3, 4, 8, 5, 2, 5, 6, 5, 6, 4, 5, 3, 3, 2, 5, 4, 4, 4, 6, 3, 5, 2, 6, 7, 6, 4, 4, 5, 5, 4,
5, 5, 6, 2, 4, 7, 7, 5, 5, 6, 5, 6, 6, 3, 4, 6, 4, 4, 6, 3, 5, 3, 3, 4, 6, 4, 2, 3, 2, 4, 3, 3, 6,
2, 7, 5, 6, 4, 2, 3, 5, 4, 3, 6, 4, 5, 9, 4, 3, 4, 5, 5, 7, 3, 4, 6, 5, 5, 4, 5, 2, 5, 2, 5, 3, 5,
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4, 5, 2, 4, 5, 3, 4, 2, 6, 6, 4, 5, 6, 4, 2, 6, 6, 6, 2, 5, 5, 5, 4, 3, 6, 4, 2, 7, 3, 5, 7, 7, 2,
3, 1, 7, 2, 5, 6, 3, 6, 3, 4, 5, 5, 5, 4, 3, 4, 4, 3, 2, 3, 5, 3, 4, 6, 5, 4, 9, 4, 5, 3, 5, 5, 1,
4, 5, 6, 3, 2, 5, 5, 7, 4, 6, 6, 5, 6, 4, 6, 4, 6, 4, 6, 8, 5, 4, 3, 4, 3, 6, 5, 4, 4, 4, 4, 3, 4,
5, 4, 7, 3, 2, 5, 7, 3, 3, 3, 5, 2, 4, 9, 4, 3, 4, 3, 3, 2, 4, 6, 4, 5, 1, 1, 5, 4, 6, 7, 4, 6, 6,
4, 3, 4, 4, 3, 2, 5, 5, 3, 4, 7, 3, 6, 5, 8, 5, 5, 5, 6, 3, 3, 8, 2, 2, 5, 3, 3, 7, 2, 2, 3, 3, 4,
4, 5, 6, 1, 4, 3, 5, 4, 5, 2, 5, 6, 5, 5, 7, 3, 3, 5, 3, 5, 5, 6, 3, 5, 3, 4, 7, 6, 4, 7, 2, 4, 3,
2, 5, 5, 2, 7, 7, 9

UPM 4, 4, 7, 3, 4, 5, 6, 5, 6, 3, 2, 3, 6, 7, 4, 6, 2, 7, 4, 2, 7, 2, 4, 4, 7, 6, 6, 4, 3, 5,
3, 5, 5, 3, 5, 5, 9, 5, 6, 3, 3, 5, 6, 5, 4, 4, 5, 7, 7, 7, 7, 5, 4, 3, 5, 5, 5, 4, 4, 6, 4, 4, 7,
5, 7, 5, 5, 6, 4, 6, 5, 5, 5, 3, 5, 6, 4, 4, 6, 5, 4, 5, 7, 6, 3, 3, 3, 2, 3, 5, 6, 6, 3, 6, 3, 6,
5, 5, 6, 5, 4, 7, 5, 3, 5, 6, 4, 5, 4, 4, 3, 5, 3, 6, 5, 3, 5, 6, 3, 4, 2, 7, 7, 5, 4, 4, 6, 4, 5,
6, 4, 6, 3, 3, 6, 6, 5, 6, 6, 4, 5, 6, 3, 4, 6, 5, 4, 5, 3, 5, 3, 4, 4, 5, 3, 3, 3, 4, 7, 5, 3, 4,
1, 7, 5, 5, 4, 2, 4, 4, 3, 2, 5, 4, 5, 8, 5, 4, 4, 6, 5, 5, 3, 6, 5, 4, 5, 5, 5, 3, 4, 4, 7, 5, 6,
5, 5, 3, 5, 6, 3, 5, 3, 6, 5, 5, 5, 6, 4, 3, 5, 5, 5, 2, 5, 3, 5, 5, 4, 6, 4, 2, 7, 3, 5, 7, 7, 3,
3, 2, 5, 3, 4, 8, 4, 5, 2, 5, 5, 4, 6, 4, 3, 5, 4, 2, 2, 4, 5, 3, 4, 7, 4, 4, 6, 4, 7, 4, 7, 5, 1,
4, 6, 7, 3, 3, 5, 3, 7, 5, 7, 6, 4, 5, 4, 4, 5, 7, 5, 5, 8, 4, 5, 3, 5, 3, 7, 4, 5, 5, 7, 5, 3, 5,
4, 5, 8, 3, 4, 4, 7, 4, 3, 5, 6, 3, 4, 7, 4, 3, 5, 4, 4, 3, 5, 6, 5, 3, 1, 2, 5, 4, 6, 5, 3, 4, 6,
5, 2, 5, 4, 2, 2, 6, 5, 5, 6, 6, 3, 5, 7, 9, 5, 4, 6, 5, 4, 3, 7, 4, 4, 5, 3, 6, 7, 3, 2, 4, 4, 4,
4, 5, 5, 2, 5, 3, 4, 4, 6, 3, 4, 5, 4, 4, 8, 5, 4, 4, 4, 4, 4, 7, 4, 4, 2, 4, 6, 6, 5, 8, 2, 5, 5,
1, 5, 4, 2, 6, 6, 9

7.5. QUANTILE REGRESSION
Linear regression techniques are designed to help us predict expected
values, as in E(Y) = m + bX. But what if our real interest is in predict-
ing extreme values, if, for example, we would like to characterize the
observations of Y that are likely to lie in the upper and lower tails of Y ’s
distribution.

Even when expected values or medians lie along a straight line, other
quantiles may follow a curved path. Koenker and Hallock applied the
method of quantile regression to data taken from Ernst Engel’s study in
1857 of the dependence of households’ food expenditure on household
income. As Fig. 7.8 reveals, not only was an increase in food expenditures
observed as expected when household income was increased, but the dis-
persion of the expenditures increased also.

In estimating the tth quantile1, we try to find that value of b for which
Skrt(yk - f[xk, b]) is a minimum, where

Unfortunately, as with LAD regression, quantile regression is not readily
executed within the Excel framework.

r t
t

t x x x
x x
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= -( ) £
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0
1 0
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7.6. VALIDATION
As noted in the preceding sections, more than one model can provide a
satisfactory fit to a given set of observations; even then, goodness of fit is
no guarantee of predictive success. Before putting the models we develop
to practical use, we need to validate them. There are three main
approaches to validation:

1. Independent verification (obtained by waiting until the future arrives or
through the use of surrogate variables)

2. Splitting the sample (using one part for calibration, the other for 
verification)

3. Resampling (taking repeated samples from the original sample and
refitting the model each time)

In what follows, we examine each of these methods in turn.

7.6.1. Independent Verification
Independent verification is appropriate and preferable whatever the objec-
tives of your model. In geologic and economic studies, researchers often
return to the original setting and take samples from points that have been
bypassed on the original round. In other studies, verification of the
model’s form and the choice of variables is obtained by attempting to fit
the same model in a similar but distinct context.
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FIGURE 7.8 Engel data with quantile regression lines superimposed.



For example, having successfully predicted an epidemic at one army
base, one would then wish to see whether a similar model might be
applied at a second and a third almost-but-not-quite identical base.

Independent verification can help discriminate among several models
that appear to provide equally good fits to the data. Independent verifica-
tion can be used in conjunction with either of the two other validation
methods. For example, an automobile manufacturer was trying to forecast
parts sales. After correcting for seasonal effects and long-term growth
within each region, ARIMA techniques were used.2 A series of best-fitting
ARIMA models was derived: one model for each of the nine sales regions
into which the sales territory had been divided. The nine models were
quite different in nature. As the regional seasonal effects and long-term
growth trends had been removed, a single ARIMA model applicable to all
regions, albeit with coefficients that depended on the region, was more
plausible. The model selected for this purpose was the one that gave the
best fit when applied to all regions.

Independent verification also can be obtained through the use of surro-
gate or proxy variables. For example, we may want to investigate past cli-
mates and test a model of the evolution of a regional or worldwide climate
over time. We cannot go back directly to a period before direct measure-
ments on temperature and rainfall were made, but we can observe the
width of growth rings in long-lived trees or measure the amount of
carbon dioxide in ice cores.

7.6.2. Splitting the Sample
For validating time series, an obvious extension of the methods described
in the preceding section is to hold back the most recent data points, fit
the model to the balance of the data, and then attempt to “predict” the
values held in reserve.

When time is not a factor, we still would want to split the sample into
two parts, one for estimating the model parameters and the other for veri-
fication. The split should be made at random. The downside is that when
we use only a portion of the sample, the resulting estimates are less
precise.

In Exercises 7.24–7.26, we want you to adopt a compromise proposed
by Moiser. Begin by splitting the original sample in half; choose your
regression variables and coefficients independently for each of the 
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subsamples. If the results are more or less in agreement, then combine the
two samples and recalculate the coefficients with greater precision.

There are several different ways to arrange for the division. Here is one
way:

• Suppose we have 100 triples of observations in columns 1 through 4.
We start a 4th column as we did in Chapter 1 for an audit, insert the
formula = Rand() in the top cell, and copy it down the column. Wher-
ever a value greater than 0.500 appears, the observation will be
included in the training set.

Exercise 7.24. Apply Moiser’s method to the Milazzo data of Exercise
7.12. Can total coliform levels be predicted on the basis of month, oxygen
level, and temperature?

TotColi 30, 22, 16, 18, 32, 40, 50, 34, 32, 32, 34, 18, 16, 19, 65, 54, 32, 59, 45, 27,
88, 32, 78, 45, 68, 14, 54, 22, 25, 32, 22, 17, 87, 17, 46, 23, 10, 19, 38, 22, 12, 26, 8,
8, 11, 19, 45, 78, 6, 9, 87, 6, 23, 28, 0, 0, 43, 8, 23, 19, 0, 5, 28, 19, 14, 32, 12, 17,
33, 21, 18, 5, 22, 13, 19, 27, 30, 28, 16, 6, 21, 27, 58, 45

Exercise 7.25. Apply Moiser’s method to the data provided in Exercises
7.22 and 7.23 to obtain prediction equation(s) for Attitude in terms of
some subset of the remaining variables.

Note: As conditions and relationships do change over time, any method
of prediction should be revalidated frequently. For example, suppose we
had used observations from January 2000 to January 2004 to construct
our original model and held back more recent data from January to June
2004 to validate it. When we reach January 2005, we might refit the
model, using the data from 1/2000 to 6/2004 to select the variables and
determine the values of the coefficients, then use the data from 6/2004 to
1/2005 to validate the revised model.

Exercise 7.26. Some authorities would suggest discarding the earliest
observations before refitting the model. In the present example, this
would mean discarding all the data from the first half of the year 2000.
Discuss the possible advantages and disadvantages of discarding these data.

7.6.3. Cross-Validation with the Bootstrap
Recall that the purpose of bootstrapping is to simulate the taking of
repeated samples from the original population (and to save money and
time by not having to repeat the entire sampling procedure from scratch).
By bootstrapping, we are able to judge to a limited extent whether the
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models we derive will be useful for predictive purposes or whether they
will fail to carry over from sample to sample. As Exercise 7.27 demon-
strates, some variables may prove more reliable as predictors than others.

Exercise 7.27. Bootstrap repeatedly from the data provided in Exercises
7.22 and 7.23 and use the XLSTAT stepwise function to select the vari-
ables to be incorporated in the model each time. Are some variables
common to all the models?

7.7. CLASSIFICATION AND REGRESSION TREES
As the number of potential predictors increases, the method of linear
regression becomes less and less practical. With three potential predictors,
we can have as many as seven coefficients to be estimated: one for the
intercept, three for first-order terms in the predictors Pi, two for second-
order terms of the form PiPj, and one third-order term P1P2P3. With k
variables, we have k first-order terms, k(k - 1) second-order terms, and so
forth. Should all these terms be included in our model? Which ones
should be neglected? With so many possible combinations, will a single
equation be sufficient?

We need to consider alternate approaches. If you’re a mycologist, a
botanist, a herpetologist, or simply a nature lover you may have made use
of some sort of a key. For example,

1. Leaves simple?
3. Leaves needle-shaped?

a. Leaves in clusters of 2 to many?
i. Leaves in clusters of 2 to 5, sheathed, persistent for several

years?

To derive the decision tree depicted in Fig. 7.9, we began by grouping
our prospects’ attitudes into categories using the data from Exercise 7.22.
Purchase attitudes of 1, 2, or 3 indicate low interest, 4, 5, and 6 indicate
medium interest, and 7, 8, and 9 indicate high interest. For example, if
the orginal purchase data were in column L, we might categorize the first
entry in an adjacent column via the command = IF(L3 < 4, 1, IF(L3 < 7,
2, 3)), which we then would copy down the column.

As in Exercise 7.22, the object was to express Purchase as a function of
Fashion, Gamble, and Ozone. The computer considered each of the vari-
ables in turn, looking to find both the variable and the associated value
that would be most effective in subdividing the data. Eventually, it settled
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on “Is Gamble <5.5” as the most effective splitter. This question divides
the training data set into two groups, one containing all the most likely
prospects.

The computer then proceded to look for a second splitter that would
separate the “lo” prospects from the medium. Again, “Gamble” proved to
be the most useful, and so on.

Obviously, building a decision tree is not something you would want to
attempt in the absense of a computer and the appropriate software. Fortu-
nately, you can download Ctree, a macro-filled Excel spreadsheet, from
http://www.geocities.com/adotsaha/CTree/CtreeinExcel.
html.

The first of the seven worksheets in the CTree package, labeled
“ReadMe,” contains detailed instructions for the use of the remaining
worksheets. Initially, the Ctree “Data” worksheet contains the sepal
length, sepal width, petal length, and petal width of 150 irises. The
attempt at classification of the iris into three separate species on the basis
of these measurements dates back to 1935. Our own first clues to the
number of subpopulations or categories of iris, as well as to the general
shape of the underlying frequency distribution, come from consideration
of the histogram in Fig. 7.10. A glance suggests the presence of at least
two species, although because of the overlap of the various subpopulations
it is difficult to be sure. Three species actually are present as shown in Fig.
7.11.

In constructing the decision tree depicted in part in Fig. 7.12, we 
made two modifications to the default settings in the Ctree spreadsheet.
First, on the Data sheet, we included sepal length and sepal width as
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Gamble < 5.5

Gamble < 4.5

Fashion < 5.5

Gamble < 3.5

Gamble < 6.5

med

lo

lo

lo
lo lo

med

med

hi
hi hi

FIGURE 7.9 Labeled classification tree for predicting likelihood of purchase.
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explanatory variables, changing the settings in row21 from “omit” to
“cont.” Surprisingly, this change did not affect the resulting decision tree,
which still made use of only petal length and petal width as classifiers.

Second, on the UserInput sheet, we selected option 1 for partitioning
into training and test sets. Option 2 is appropriate only with time series
data.

Note in Fig. 7.12 that the setosa species is classified on the basis of a
single value, while distinguishing veriscolor and verginica subspecies is far
more complicated.

How successful is our decision tree? On the Result worksheet, we learn
(Table 7.5) that our decision tree correctly classified iris species in 126 our
of 128 instances. Amazing? Not really, considering that our tree-building
program was given the correct classification of these species to begin with.
The true test of the method comes when we attempt to classify without
such knowledge.
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FIGURE 7.12 Part of decision tree for iris classification.



As noted earlier, we set aside 20% of the flowers at random to test our
classification scheme on. The test results in Table 7.6 abstracted from the
Results worksheet are reassuring.

Exercise 7.28. Show that the decision tree method only makes use of
variables it considers important by constructing a tree for classifying
prospective purchasers into hi, med, and lo categories using the model

Purchase ~ Fashion + Ozone + Pollution + Coupons +
Gamble + Today + Work + UPM

Exercise 7.29. Apply the CART method to the Milazzo data of Exercise
7.12 to develop a prediction scheme for coliform levels in bathing water
based on the month, oxygen level, and temperature.

7.8. DATA MINING
When data sets are very large with hundreds of rows and dozens of
columns, different algorithms come into play. In Section 2.2.1, we con-
sidered the possibility of a market basket analysis, when a retail outlet
would wish to analyze the pattern of its sales to see what items might be
profitably grouped and marketed together.

Table 7.7 depicts part of just such a data set. Each column corresponds
to a different type of book and each row corresponds to a single transac-
tion. The complete data set contains 2000 transactions.
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TABLE 7.5 Classification of Training Data

Predicted Class

True Class Setosa Verginica Versicolor

Setosa 41 41

Verginica 43 2 45

Versicolor 42 42
41 43 44 128

TABLE 7.6 Classification of Test Data

Predicted Class

True Class Setosa Verginica Versicolor

Setosa 9 9

Verginica 5 5

Versicolor 1 7 8
9 6 7 22
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After downloading and installing Xlminer, an Excel add-in, from
http://www.resample.com/xlminer, select “Affinity” from the
XlMiner menu, and then “Association rules.” The Association Rules dialog
box will appear as shown in Fig. 7.13.

Completing the dialog as shown, click on the OK button to see the
results displayed in Fig. 7.14. Note that each rule is presented along with
an estimated confidence level, support and lift ratio.

Rule #1 says that if an Italian cookbook and a Youthbook are bought, a
cookbook will also be bought. This particular rule has confidence of
100%, meaning that, of the people who bought an Italian cookbook and a
Youthbook, all (100%) bought cookbooks as well. “Support (a)” indicates
that it has the support of 118 transactions, meaning that 118 people
bought an Italian cookbook and a Youthbook, total. “Support (c)” indi-
cates the number of transactions involving the purchase of cookbooks,
total. (This is a piece of side information—it is not involved in calculating
the confidence or support for the rule itself.) “Support (a U c)” is the
number of transactions where an Italian cookbook and a Youthbook as
well as a cookbook were bought.

Lift ratio indicates how much more likely one is to encounter a cook-
book transaction if just those transactions where an Italian cookbook and
a Youthbook is purchased are considered, as compared to the entire popu-
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FIGURE 7.13 Preparing to do a market basket analysis.



lation of transactions—it’s the confidence divided by support (c) where
the latter is expressed as a percentage. For Rule#1, the confidence is 100%.
support (c) (in percentage) = (862/2000)*100 = 43.1. So the lift ratio =
100/43.1 = 2.32.

7.9. SUMMARY AND REVIEW
In this chapter, you were introduced to two techniques for classifying and
predicting outcomes: linear regression and classification trees. Three
methods for estimating linear regression coefficients were described along
with guidelines for choosing among them. You were provided with a step-
wise technique for choosing variables to be included in a regression
model. The assumptions underlying the regression technique were dis-
cussed, along with the resultant limitations. Overall guidelines for model
development were provided.

You learned the importance of validating and revalidating your models
before placing any reliance upon them. You were introduced to one of the
simplest of pattern recognition methods, the classification tree, to be used
whenever there are large numbers of potential predictors or when classifi-
cation rather than quantitative prediction is your primary goal.

Exercise 7.30. Make a list of all the italicized terms in this chapter.
Provide a definition for each one, along with an example.
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FIGURE 7.14 Results of a market basket analysis of the bookstore data.



Exercise 7.31. It is almost self-evident that levels of toluene, a commonly
used solvent, would be observed in the blood after working in a room
where the solvent was present in the air. Do the observations recorded
below also suggest that blood levels are a function of age and body
weight? Construct a model for predicting blood levels of toluene using
this data.
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Blood Tol 12.085 9.647 7.524 10.783 38.619 25.402 26.481 28.155

Air Tol 500 500 500 500 1000 1000 1000 1000

Weight 371 347 misg 348 378 433 363 420

Age 83 84 85 85 93 93 85 86

Interval 1 2 2 3 4 5 5 6 7 9 9

Weight 2.44 4.46 4.00 2.21 10.8 10.4 10.13 15.78 15.50 13.2 16.6

Blood Tol 0.494 0.763 0.534 0.552 1.084 0.944 0.955 0.696

Air Tol 50 50 50 50 100 100 100 100

Weight 378 439 302 405 421 370 363 389

Age 95 95 84 85 86 86 83 86

Exercise 7.32. Using the data from Exercise 6.18, develop a model for
predicting whether an insurance agency will remain solvent.

Exercise 7.33. The weights of rat fetuses killed at various intervals after
conception are recorded below. Test the hypothesis that the weight of a
rat fetus doubles every 2.5 time intervals.



IN THIS CHAPTER, we assume you have just completed an analysis of your
own or someone else’s research and now wish to issue a report on the
overall findings. You’ll learn what to report and how to go about report-
ing it, with particular emphasis on the statistical aspects of data collection
and analysis.

One of the most common misrepresentations in scientific work
is the scientific paper itself. It presents a mythical reconstruc-
tion of what actually happened. All of what are in retrospect
mistaken ideas, badly designed experiments and incorrect calcu-
lations are omitted. The paper presents the research as if it had
been carefully thought out, planned and executed according to
a neat, rigorous process, for example involving testing of a
hypothesis. The misrepresentation of the scientific paper is the
most formal aspect of the misrepresentation of science as an
orderly process based on a clearly defined method.

Brian Martin

8.1. WHAT TO REPORT
Reportable elements include all of the following:

• Study objectives

• Hypotheses

• Power and sample size calculations

• Data collection methods
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• Clusters

• Validation methods

• Data summaries

• Details of the statistical analysis

• Sources of missing data

• Exceptions

Study Objectives. If you are contributing to the design or analysis of
someone else’s research efforts, a restatement of the objectives is an essen-
tial first step. This ensures that you and the principal investigator are on
the same page. This may be necessary in order to formulate quantifiable,
testable hypotheses.

Objectives may have shifted or been expanded upon. Often such
changes are not documented. You cannot choose or justify the choice of
statistical procedures without a thorough understanding of study 
objectives.

Hypotheses. To summarize what was stated in Chapter 5, both your
primary and alternate hypotheses must be put in quantified testable form.
Your primary hypothesis is used to establish the significance level and your
alternative hypothesis to calculate the power of your tests.

Your objective may be to determine whether adding a certain feature to
a product would increase sales. (Quick. Will this alternative hypothesis
lead to a one-sided or a two-sided test?) Yet for reasons that have to do
solely with the limitations of statistical procedures, your primary hypothe-
sis will normally be a null hypothesis of no effect.

Not incidentally, as we saw in Chapter 6, the optimal statistical test for
an ordered response is quite different from the statistic one uses for
detecting an arbitrary difference among approaches. All the more reason
why we need to state our alternative hypotheses explicitly.

Power and Sample Size Calculations. Your readers will want to know
the details of your power and sample size calculations early on. If you
don’t let them know, they may assume the worst, for example, that your
sample size is too small and your survey is not capable of detecting signifi-
cant effects. State the alternative hypotheses that your study is intended to
detect. Reference your methodology and/or the software you used in
making your power calculations. State the source(s) you relied on for your
initial estimates of incidence and variability.

Here is one example: “Over a 10-year period in the Himalayas, Dempsy
and Peters [1995] observed an incidence of five infected individuals per
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100 persons per year. To ensure a probability of at least 90% of detecting a
reduction in disease incidence from five persons to one person per 100
persons per year using a one-sided Fisher’s exact test at the 2.5% signifi-
cance level, 400 individuals were assigned to each experimental procedure
group. This sample size was determined using the StatXact-5 power calcu-
lations for comparing two binomials.”

Data Collection Methods. Although others may have established the
methods of data collection, a comprehensive knowledge of these methods
is essential to your choice of statistical procedures and should be made
apparent in report preparation. Consider that 90% of all errors occur
during data collection as observations are erroneously recorded (GIGO),
guessed at, or even faked. Seemingly innocuous work-arounds may have
jeopardized the integrity of the study. You need to know and report on
exactly how the data were collected, not on how they were supposed to
have been collected.

You need to record how study subjects were selected, what was done to
them (if appropriate), and when and how this was done. Details of recruit-
ment or selection are essential if you are to convince readers that your
work is applicable to a specific population. If incentives were used (phone
cards, t-shirts, cash), their use should be noted.

Readers will want to know the nature and extent of any blinding (and
of the problems you may have had to overcome to achieve it). They will
want to know how each observational subject was selected—random, strat-
ified, or cluster sampling? They will want to know the nature of the con-
trols (and the reasoning underlying your choice of a passive or active
control experimental procedure) and of the experimental design. Did each
subject act as his own control as in a crossover design? Were case controls
used? If they were matched, how were they matched?

You will need the answers to all of the following questions and should
incorporate each of the answers in your report:

• What was the survey or experimental unit?

• What were all the potential sources of variation?

• How was each of the individual sources compensated for? In par-
ticular, was the sample simple or stratified?

• How were subjects or units grouped into strata?

• Were the units sampled in clusters or individually?

• How were subjects assigned to experimental procedures? If assign-
ment was at random, how was this accomplished?

• How was independence of the observations ensured?
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Clusters. Surveys often take advantage of the cost savings that result from
naturally occurring groups such as work sites, schools, clinics, neighbor-
hoods, even entire towns or states. Not surprisingly, the observations
within such a group are correlated. For example, individuals in the same
community or work group often have shared views. Married couples, the
ones whose marriages last, tend to have shared values. The effect of such
correlation must be accounted for by the use of the appropriate statistical
procedures. Thus the nature and extent of such cluster sampling must be
spelled out in detail in your reports.

Exercise 8.1. Examine three recent reports in your field of study or in
any field that interests you. (Examine three of your own reports if you
have them.) Answer the following in each instance:

1. What was the primary hypothesis?

2. What was the principal alternative hypothesis?

3. Which statistics were used and why?

4. Were all the assumptions underlying this statistic satisfied?

5. Was the power of this statistic reported?

6. Was the statistic the most powerful available?

7. If significant, was the size of the effect estimated?

8. Was a one-tailed or two-tailed test used? Was this correct?

9. What was the total number of tests that were performed?

If the answers to these questions were not present in the reports you
reviewed, what was the reason? Had their authors something to hide?

Validation Methods. A survey will be compromised if any of the follow-
ing is true:

• Participants are not representative of the population of interest.

• Responses are not independent among respondents.

• Nonresponders, that is, those who decline to participate, would
have responded differently.

• Respondents lie or answer carelessly.

• Forms are incomplete.

Your report should detail the preventive measures used by the investigator
and the degree to which they were successful.

You should describe the population(s) of interest in detail—providing
demographic information where available—and similarly characterize the
samples of participants to see whether they are indeed representative.
(Graphs are essential here.)
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You should describe the measures taken to ensure that responses were
independent, including how participants were selected and where and how
the survey took place.

A sample of nonrespondents should be contacted and evaluated. The
demographics of the nonrespondents and their responses should be com-
pared with those of the original sample.

How do you know respondents told the truth? You should report the
results of any crosschecks such as redundant questions. And you should
report the frequency of response omissions on a question-by-question basis.

8.2. TEXT, TABLE, OR GRAPH?

Whatever is the use of a book without pictures?
Alice in Alice in Wonderland

A series of major decisions need to be made as to how you will report
your results—text, table, or graph? Whatever Alice’s views on the subject,
a graph may or may not be more efficient at communicating numeric
information than the equivalent prose. This efficiency is in terms of the
amount of information successfully communicated and not necessarily any
space savings. Resist the temptation to enhance your prose with pictures.

And don’t fail to provide a comprehensive caption for each figure. As
Good and Hardin note in their Wiley text, Common Errors in Statistics
[2003], if the graphic is a summary of numeric information, then the
graph caption is a summary of the graphic. The text should be considered
part of the graphic design and should be carefully constructed rather than
placed as an afterthought. Readers, for their own use, often copy graphics
and tables that appear in articles and reports. A failure on your the part to
completely document the graphic in the caption can result in gross mis-
representation in these cases.

A sentence should be used for displaying 2 to 5 numbers, as in “The
blood type of the population of the United States is approximately 45% O,
40% A, 11% B, and 4% AB.” Note that the blood types are ordered by 
frequency.

Tables with appropriate marginal means are often the best method of
presenting results. Consider adding a row (or column, or both) of con-
trasts; for example, if the table has only two rows we could add a row of
differences, row 1 minus row 2.

Tables dealing with two-factor arrays are straightforward, provided con-
fidence limits are clearly associated with the correct set of figures. Tables
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involving three or more factors simultaneously are not always clear to the
reader and are best avoided.

Make sure the results are expressed in appropriate units. For example,
parts per thousand may be more natural than percentages in certain cases.

A table of deviations from row and column means (or tables, if there are
several strata) can alert us to the presence of outliers and may also reveal
patterns in the data that were not yet considered.

Exercise 8.2. To report each of the following, should you use text, a
table, or a graph? If a graphic, then what kind?

• Number of goals (each of 5 teams)

• Blood types of Australians

• Comparison treated/control red blood cell counts

• Comparison of blood types in two populations

• Location of leukemia cases by county

• Arm span vs. height (6 persons)

8.3. SUMMARIZING YOUR RESULTS
Your objective in summarizing your results should be to communicate
some idea of all of the following:

1. The populations from which your samples are drawn

2. Your estimates of population parameters

3. The dispersion of the distribution from which the observations were
drawn

4. The precision of your estimates

Proceed in three steps:
First, characterize the populations and subpopulations from which your

observations are drawn. Of course, this is the main goal in studies of
market segmentation. A histogram or scatterplot can help communicate
the existence of such subpopulations to our readers. Few real-life distribu-
tions resemble the bell-shaped normal curve depicted in Fig. 1.23. Most
are bi- or even trimodal, with each mode or peak corresponding to a dis-
tinct subpopulation. We can let the histogram speak for itself, but a better
idea, particularly if you already suspect that the basis for market segments
is the value of a second variable (such as home ownership or level of edu-
cation), is to add an additional dimension by dividing each of the his-
togram’s bars into differently shaded segments whose size corresponds to
the relative numbers in each subpopulation (Fig. 8.1).
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FIGURE 8.2 Overlying scatterplots of class data by sex.

Similarly, we can provide for different subpopulations on a two-dimen-
sional scatterplot by using different colors or shapes for the points (Figs.
8.2 and 8.3).

8.3.1. Center of the Distribution
For small samples of three to five observations, summary statistics are vir-
tually meaningless. Reproduce the actual observations; this is easier to do
and more informative.



Although the arithmetic mean or average is in common use, it can be
very misleading. For example, the mean income in most countries is far in
excess of the median income or 50th percentile to which most of us can
relate. When the arithmetic mean is meaningful, it is usually equal to or
close to the median. Consider reporting the median in the first place.

The geometric mean is more appropriate than the arithmetic in three
sets of circumstances:

1. When losses or gains can best be expressed as a percentage rather than
a fixed value

2. When rapid growth is involved

3. When the data span several orders of magnitude, as with the concentra-
tion of pollutants

Because bacterial populations can double in number in only a few
hours, many government health regulations utilize the geometric rather
than the arithmetic mean. A number of other government regulations also
use it, although the sample median would be far more appropriate (and
understandable). In any event, as your average reader may be unfamiliar
with the geometric mean, be sure to comment on its use and on your
reasons for adopting it.
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The purpose of your inquiry must be kept in mind. Orders (in $) from
a machinery plant ranked by size may be quite skewed with a few large
orders. The median order size might be of interest in describing sales; the
mean order size would be of interest in estimating revenues and profits.

Are the results expressed in appropriate units? For example, are parts per
thousand more natural in a specific case than percentages? Have we
rounded off to the correct degree of precision, taking account of what we
know about the variability of the results, and considering whether the
reader will use them, perhaps by multiplying by a constant factor or
another variable?

Whether you report a mean or a median, be sure to report only a sensi-
ble number of decimal places. Most statistical packages including R can
give you nine or 10. Don’t use them. If your observations were to the
nearest integer, your report on the mean should include only a single
decimal place. Limit tabulated values to no more than two effective
(changing) digits. Readers can distinguish 354691 and 354634 at a glance
but will be confused by 354691 and 357634.

8.3.2. Dispersion
The standard error of a summary is a useful measure of uncertainty if the
observations come from a normal or Gaussian distribution. Then in 95%
of the samples we would expect the sample mean to lie within two stan-
dard errors of the population mean.

But if the observations come from any of the following:

• A nonsymmetric distribution like an exponential or a Poisson

• A truncated distribution like the uniform

• A mixture of populations

we cannot draw any such inference. For such a distribution, the probabil-
ity that a future observation would lie between plus and minus one stan-
dard error of the mean might be anywhere from 40% to 100%.

Recall that the standard error of the mean equals the standard deviation
of a single observation divided by the square root of the sample size. As
the standard error depends on the squares of individual observations, it is
particularly sensitive to outliers. A few extra large observations, even a
simple typographical error, might have a dramatic impact on its value.

If you can’t be sure your observations come from a normal distribution,
then for samples from nonsymmetric distributions of size 6 or less, tabu-
late the minimum, the median, and the maximum. For samples of size 7
and up, consider using a box and whiskers plot. For samples of size 30
and up, the bootstrap may provide the answer you need.
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8.4. REPORTING ANALYSIS RESULTS
How you conduct and report your analysis will depend upon whether or
not

• Baseline results of the various groups are equivalent

• (if multiple observation sites were used) Results of the disparate
experimental procedure sites may be combined

• (if adjunct or secondary experimental procedures were used)
Results of the various adjunct experimental procedure groups may
be combined

• Missing data, dropouts, and withdrawals are unrelated to experi-
mental procedure

Thus your report will have to include

1. Demonstrations of similarities and differences for the following:

• Baseline values of the various experimental procedure groups

• End points of the various subgroups determined by baseline vari-
ables and adjunct therapies

2. Explanations of protocol deviations including:

• Ineligibles who were accidentally included in the study

• Missing data

• Dropouts and withdrawals

• Modifications to procedures

Further explanations and stratifications will be necessary if the rates of
any of the above protocol deviations differ among the groups assigned to
the various experimental procedures. For example, if there are differences
in the baseline demographics, then subsequent results will need to be
stratified accordingly. Moreover, some plausible explanation for the differ-
ences must be advanced.

Here is an example: Suppose the vast majority of women in the study
were in the control group. To avoid drawing false conclusions about the
men, the results for men and women must be presented separately, unless
one first can demonstrate that the experimental procedures have similar
effects on men and women.

Report the results for each primary end point separately. For each end
point:

a) Report the aggregate results by experimental procedure for all who
were examined during the study for whom you have end point or
intermediate data.
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b) Report the aggregate results by experimental procedure only for those
subjects who were actually eligible, who were treated originally as ran-
domized, or who were not excluded for any other reason. Provide sig-
nificance levels for comparisons of experimental procedures.

c) Break down these latter results into subsets based on factors deter-
mined before the start of the study as having potential impact on the
response to treatment, such as adjunct therapy or gender. Provide sig-
nificance levels for comparisons of experimental procedures for these
subsets of cases.

d) List all factors uncovered during the trials that appear to have altered
the effects of the experimental procedures. Provide a tabular compari-
son by experimental procedure for these factors, but do not include p
values. The probability calculations that are used to generate p values
are not applicable to hypotheses and subgroups that are conceived
after the data have been examined.

If there are multiple end points, you have the option of providing a
further multivariate comparison of the experimental procedures.

Last, but by no means least, you must report the number of tests per-
formed. When we perform multiple tests in a study, there may not be
room (or interest) in which to report all the results, but we do need to
report the total number of statistical tests performed so that readers can
draw their own conclusions as to the significance of the results that are
reported. To repeat a finding of previous chapters, when we make 20 tests
at the 1 in 20 or 5% significance level, we expect to find at least one or
perhaps two results that are “statistically significant” by chance alone.

8.4.1 p Values? Or Confidence Intervals?
As you read the literature of your chosen field, you will soon discover that
p values are more likely to be reported than confidence intervals. We don’t
agree with this practice, and here is why:

Before we perform a statistical test, we are concerned with its signifi-
cance level, that is, the probability that we will mistakenly reject our
hypothesis when it is actually true. In contrast to the significance level, the
p value is a random variable that varies from sample to sample. There may
be highly significant differences between two populations, and yet the
samples taken from those populations and the resulting p value may not
reveal that difference. Consequently, it is not appropriate for us to
compare the p values from two distinct experiments, or from tests on two
variables measured in the same experiment, and declare that one is more
significant than the other.

If we agree in advance of examining the data that we will reject the
hypothesis if the p value is less than 5%, then our significance level is 5%.
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Whether our p value proves to be 4.9% or 1% or 0.001%, we will come to
the same conclusion. One set of results is not more significant than
another; it is only that the difference we uncovered was measurably more
extreme in one set of samples than in another.

We are less likely to mislead and more likely to communicate all the
essential information if we provide confidence intervals about the esti-
mated values. A confidence interval provides us with an estimate of the
size of an effect as well as telling us whether an effect is significantly dif-
ferent from zero.

Confidence intervals, you will recall from Chapter 4, can be derived
from the rejection regions of our hypothesis tests. Confidence intervals
include all values of a parameter for which we would accept the hypothesis
that the parameter takes that value.

Warning: A common error is to misinterpret the confidence interval as
a statement about the unknown parameter. It is not true that the proba-
bility that a parameter is included in a 95% confidence interval is 95%. Nor
is it at all reasonable to assume that the unknown parameter lies in the
middle of the interval rather than toward one of the ends. What is true is
that if we derive a large number of 95% confidence intervals, we can
expect the true value of the parameter to be included in the computed
intervals 95% of the time. Like the p value, the upper and lower confi-
dence limits of a particular confidence interval are random variables, for
they depend upon the sample that is drawn.

The probability that the confidence interval covers the true value of the
parameter of interest and the method used to derive the interval must
both be reported.

Exercise 8.3. Give at least two examples to illustrate why p values are not
applicable to hypotheses and subgroups that are conceived after the data is
examined.

8.5. EXCEPTIONS ARE THE REAL STORY
Before you draw conclusions, be sure you have accounted for all missing
data, interviewed nonresponders, and determined whether the data were
missing at random or were specific to one or more subgroups.

Let’s look at two examples, the first involving nonresponders and the
second airplanes.

8.5.1. Nonresponders
A major source of frustration for researchers is when the variances of the
various samples are unequal. Alarm bells sound. t-Tests and the analysis of
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variance are no longer applicable; we run to the textbooks in search of
some variance-leveling transformation. And completely ignore the phe-
nomena we’ve just uncovered.

If individuals have been assigned at random to the various study groups,
the existence of a significant difference in any parameter suggests that
there is a difference in the groups. The primary issue is to understand why
the variances are so different, and what the implications are for the sub-
jects of the study. It may well be the case that a new experimental proce-
dure is not appropriate because of higher variance, even if the difference in
means is favorable. This issue is important whether or not the difference
was anticipated.

In many clinical measurements there are minimum and maximum values
that are possible. If one of the experimental procedures is very effective, it
will tend to push patient values into one of the extremes. This will
produce a change in distribution from a relatively symmetric one to a
skewed one, with a corresponding change in variance.

The distribution may not be unimodal. A large variance may occur
because an experimental procedure is effective for only a subset of the
patients. Then you are comparing mixtures of distributions of 
responders and nonresponders; specialized statistical techniques may be
required.

8.5.2. The Missing Holes
During the Second World War, a group was studying planes returning
from bombing Germany. They drew a rough diagram showing where the
bullet holes were and recommended that those areas be reinforced.
Abraham Wald, a statistician, pointed out that essential data were missing.
What about the planes that didn’t return?

When we think along these lines, we see that the areas of the returning
planes that had almost no apparent bullet holes have their own story to
tell. Bullet holes in a plane are likely to be at random, occurring over the
entire plane. The planes that did not return were those that were hit in
the areas where the returning planes had no holes. Do the data missing
from your own experiments and surveys also have a story to tell?

8.5.3 Missing Data
As noted in an earlier section of this chapter, you need to report the
number and source of all missing data. But especially important is to sum-
marize and describe all those instances in which the incidence of missing
data varied among the various treatment and procedure groups.

Here are two examples where the missing data was the real finding of
the research effort:
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To increase participation, respondents to a recent survey were offered 
a choice of completing a printed form or responding on-line. An 
unexpected finding was that the proportion of missing answers from 
the on-line survey was half that from the printed forms.

A minor drop in cholesterol levels was recorded among the small 
fraction of participants who completed a recent trial of a cholesterol-
lowering drug. As it turned out, almost all those who completed the 
trial were in the control group. The numerous dropouts from the 
treatment group had only unkind words for the test product’s foul 
taste and undrinkable consistency.

8.5.4. Recognize and Report Biases
Very few studies can avoid bias at some point in sample selection, study
conduct, and results interpretation. We focus on the wrong end points;
participants and coinvestigators see through our blinding schemes; the
effects of neglected and unobserved confounding factors overwhelm and
outweigh the effects of our variables of interest. With careful and pro-
longed planning, we may reduce or eliminate many potential sources of
bias, but seldom will we be able to eliminate all of them. Accept bias as
inevitable and then endeavor to recognize and report all that do slip
through the cracks.

Most biases occur during data collection, often as a result of taking
observations from an unrepresentative subset of the population rather than
from the population as a whole. An excellent example is the study that
failed to include planes that did not return from combat.

When analyzing extended seismological and neurological data, investiga-
tors typically select specific cuts (a set of consecutive observations in time)
for detailed analysis, rather than trying to examine all the data (a near
impossibility). Not surprisingly, such “cuts” usually possess one or more
intriguing features not to be found in run-of-the-mill samples. Too often
theories evolve from these very biased selections.

The same is true of meteorological, geological, astronomical, and epi-
demiological studies where, with a large amount of available data, investi-
gators naturally focus on the “interesting” patterns.

Limitations in the measuring instrument such as censoring at either end
of the scale can result in biased estimates. Current methods of estimating
cloud optical depth from satellite measurements produce biased results
that depend strongly on satellite viewing geometry. Similar problems arise
in high-temperature and high-pressure physics and in radioimmunoassay.
In psychological and sociological studies, too often we measure that which
is convenient to measure rather than that which is truly relevant.
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Close collaboration between the statistician and the domain expert is
essential if all sources of bias are to be detected and, if not corrected,
accounted for and reported. We read a report recently by economist
Otmar Issing in which it was stated that the three principal sources of bias
in the measurement of price indices are substitution bias, quality change
bias, and new product bias. We’ve no idea what he was talking about, but
we do know that we would never attempt an analysis of pricing data
without first consulting an economist.

8.6 SUMMARY AND REVIEW
In this chapter, we discussed the necessary contents of your reports,
whether on your own work or that of others. We reviewed what to report,
the best form in which to report it, and the appropriate statistics to use in
summarizing your data and your analysis. We also discussed the need to
report sources of missing data and potential biases.
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IF YOU HAVE MADE YOUR WAY THROUGH THE first eight chapters of this text,
then you may already have found that more and more people, strangers as
well as friends, are seeking you out for your newly acquired expertise.
(Not as many as if you were stunningly attractive or a film star, but a great
many people nonetheless.) Your boss may even have announced that from
now on you will be the official statistician of your group.

To prepare you for your new role in life, you will be asked in this
chapter to work your way through a wide variety of problems that you
may well encounter in practice. A final section will provide you with some
overall guidelines. You’ll soon learn that deciding which statistic to use is
only one of many decisions that need be made.

9.1. THE PROBLEMS

1. With your clinical sites all lined up and everyone ready to proceed with
a trial of a new experimental vaccine versus a control, the manufacturer
tells you that because of problems at the plant, the 10,000 ampoules of
vaccine you’ve received are all he will be able to send you. Explain why
you can no longer guarantee the power of the test.

2. After collecting some 50 observations, 25 on members of a control
group and 25 who have taken a low dose of a new experimental drug,
you decide to add a third high-dose group to your clinical trial, and to
take 75 additional observations, 25 on the members of each group.
How would you go about analyzing these data?

3. You are given a data sample and asked to provide an interval estimate
for the population variance. What two questions ought you to ask
about the sample first?
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4. John would like to do a survey of the use of controlled substances by
teenagers but realizes he is unlikely to get truthful answers. He comes
up with the following scheme: Each respondent is provided with a
coin, instructions, a question sheet containing two questions, and a
sheet on which to write their answer, yes or no. The two questions are:

A. Is a cola (Coke or Pepsi) your favorite soft drink? Yes or No?
B. Have you used marijuana within the past seven days? Yes or No?

The teenaged respondents are instructed to flip the coin so that the
interviewer cannot see it. If the coin comes up heads, they are to write
their answer to the first question on the answer sheet; otherwise they
are to write their answer to question 2.

Show that this approach will be successful, providing John already
knows the proportion of teenagers who prefer colas to other types of
soft drinks.

5. The town of San Philippe has asked you to provide confidence intervals
for the recent census figures for their town. Are you able to do so?
Could you do so if you had the some additional information? What
might this information be? Just how would you go about calculating
the confidence intervals?

6. The town of San Philippe has called on you once more. They have in
hand the annual income figures for the past six years for their town and
for their traditional rivals at Carfad-sur-la-mer and want you to make a
statistical comparison. Are you able to do so? Could you do so if you
had the some additional information? What might this information be?
Just how would you go about calculating the confidence intervals?

7. You have just completed your analysis of a clinical trial and have found
a few minor differences between patients subjected to the standard 
and revised procedures. The marketing manager has gone over your
findings and noted that the differences are much greater if limited 
to patients who passed their first postprocedure day without 
complications. She asks you for a p value. What do you reply?

8. At the time of his death in 1971, psychologist Cyril Burt was viewed as
an esteemed and influential member of his profession. Within months,
psychologist Leon Kamin reported numerous flaws in Burt’s research
involving monozygotic twins who were reared apart. Shortly thereafter,
a third psychologist, Arthur Jensen, also found fault with Burt’s data.

Their primary concern was the suspicious consistency of the correla-
tion coefficients for the intelligence test scores of the monozygotic
twins in Burt’s studies. In each study Burt reported sum totals for the
twins he had studied so far. His original results were published in
1943. In 1955 he added 6 pairs of twins and reported results for a
total of 21 sets of twins. Likewise in 1966, he reported the results for a
total of 53 pairs. In each study Burt reported correlation coefficients
indicating the similarity of intelligence scores for monozygotic twins
who were reared apart. A high correlation coefficient would make a
strong case for Burt’s hereditarian views.
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Burt reported the following coefficients: 1943: r = .770; 1955: r =
.771; 1966: r = .771. Why was this suspicious?

9. Which hypothesis testing method would you use to address each of the
following? Permutation, parametric, or bootstrap?

a. Testing for an ordered dose response.
b. Testing whether the mean time to failure of a new light bulb in

intermittent operation is one year.
c. Comparing two drugs, using the data from the following contin-

gency table.
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Drug A Drug B

Respond 5 9

No 5 1

d. Comparing old and new procedures using the data from the follow-
ing 2 ¥ 2 factorial design.

Control Old

Control 1,150
2,520

900
50

Young 5,640 7,100
5,120 11,020

780 13,065
4,430
7,230

Ethical Standard

Polish-born Jerzy Neyman (1894–1981) is generally viewed as
one of the most distinguished statisticians of the twentieth
century. Along with Egon Pearson, he is responsible for the
method of assigning the outcomes of a set of observations to
either an acceptance or a rejection region in such a way that the
power is maximized against a given alternative at a specified sig-
nificance level. He was asked by the United States government
to be part of an international committee monitoring the elections
held in a newly liberated Greece after World War II. In the over-
simplified view of the U.S. State Department, there were two
groups running in the election: The Communists and The Good
Guys. Professor Neyman’s report that both sides were guilty of
extensive fraud pleased no one but set an ethical standard for
other statisticians to follow.



10. The government has just audited 200 of your company’s submissions
over a four-year period and has found that the average claim was in
error in the amount of $135. Multiplying $135 by the 4000 total
submissions during that period, they are asking your company to
reimburse them in the amount of $540,000. List all possible 
objections to the government’s approach.

11. Since I first began serving as a statistical consultant almost 40 years
ago, I’ve made it a practice to begin every analysis by first computing
the minimum and maximum of each variable. Can you tell why this
practice would be of value to you as well?

12. Your mother has brought your attention to a newspaper article in
which it is noted that one school has successfully predicted the
outcome of every election of a U.S. president since 1976. Explain to
her why this news does not surprise you.

13. A clinical study is well under way when it is noted that the values of
critical end points vary far more from subject to subject than was
expected originally. It is decided to increase the sample size. Is this an
acceptable practice?

14. A clinical study is well under way when an unusual number of side
effects is observed. The treatment code is broken, and it is discovered
that the majority of the effects are occurring in subjects in the control
group. Two cases arise:

a. The difference between the two treatment groups is statistically
significant. It is decided to terminate the trials and recommend
adoption of the new treatment. Is this an acceptable practice?

b. The difference between the two treatment groups is not
statistically significant. It is decided to continue the trials but to
assign twice as many subjects to the new treatment as are placed 
in the control group. Is this an acceptable practice?

15. A jurist has asked for your assistance with a case involving possible
racial discrimination. Apparently the passing rate of minorities was
90% compared to 97% for whites. The jurist didn’t think this was
much of a difference, but then one of the attorneys pointed out 
that these numbers represented a jump in the failure rate from 
3% to 10%. How would you go about helping this jurist to reach a
decision?

When you hired on as a statistician at the Bumbling Pharmaceutical
Company, they told you they’d been waiting a long time to find a 
candidate like you. Apparently they had, for your desk is already piled high
with studies that are long overdue for analysis. Here is just a sample:

16. The end point values recorded by one physician are easily 10 times
those recorded by all other investigators. Trying to track down the
discrepancies, you discover that this physician has retired and 
closed his office. No one knows what became of his records. Your 
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co-workers instantly begin to offer you advice including all of the 
following:

a. Discard all the data from this physician.
b. Assume this physician left out a decimal point and use the 

corrected values.
c. Report the results for this observer separately.
d. Crack the treatment code and then decide.

What will you do?

17. A different clinical study involved this same physician. This time, he
completed the question about side effects that asked whether this
effect was “mild, severe, or life threatening” but failed to answer the
preceding question that specified the nature of the side effect. Which
of the following should you do?

a. Discard all the data from this physician.
b. Discard all the side effect data from this physician.
c. Report the results for this physician separately from the other

results.
d. Crack the treatment code and then decide.

18. Summarizing recent observations on the planetary systems of stars, the
Monthly Notices of the Royal Astronomical Society reported that the
vast majority of extrasolar planets in our galaxy must be gas giants like
Jupiter and Saturn as no Earth-size planet has been observed. What is
your opinion?

9.2. SOLVING PRACTICAL PROBLEMS
In what follows, we suppose that you have been given a data set to
analyze. The data did not come from a research effort that you designed,
so there may be problems, many of them. We suggest you proceed as
follows:

1. Determine the provenance of the observations.

2. Inspect the data.

3. Validate the data collection methods.

4. Formulate your hypotheses in testable form.

5. Choose methods for testing and estimation.

6. Be aware of what you don’t know.

7. Perform the analysis.

8. Qualify your conclusions.

9.2.1. The Data’s Provenance
Your very first questions should deal with how the data were collected.
What population(s) were they drawn from? Were the members of the
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sample(s) selected at random? Were the observations independent of one
another? If treatments were involved, were individuals assigned to these
treatments at random? Remember, statistics is applicable only to random
samples.1 You need to find out all the details of the sampling procedure to
be sure.

You also need to ascertain that the sample is representative of the 
population it purports to be drawn from. If not, you’ll need to 1) weight
the observations, 2) stratify the sample to make it more representative, or
3) redefine the population before drawing conclusions from the sample.

9.2.2. Inspect the Data
If satisfied with the data’s provenance, you can now begin to inspect the
data you’ve been provided. Your first step should be to compute the
minimum and the maximum of each variable in the data set and to
compare them with the data ranges you were provided by the client. If
any lie outside the acceptable range, you need to determine which specific
data items are responsible and have these inspected and, if possible, 
corrected by the person(s) responsible for their collection.

I once had a long-term client who would not let me look at the data.
Instead, he would merely ask me what statistical procedure to use next. I
ought to have complained, but this client paid particularly high fees, or at
least he did so in theory. The deal was that I would get my money when
the firm for which my client worked got its first financing from the
venture capitalists. So my thoughts were on the money to come and not
on the data.

My client took ill—later I was to learn he had checked into a 
rehabilitation clinic for a metamphetamine addiction—and his firm asked
me to take over. My first act was to ask for my money—they’d gotten
their financing. While I waited for my check, I got to work, beginning my
analysis as always by computing the minimum and the maximum of each
variable. Many of the minimums were zero. I went to verify this finding
with one of the technicians, only to discover that zeros were well outside
the acceptable range.

The next step was to look at the individual items in the database. There
were zeros everywhere. In fact, it looked as if more than half the data
were either zeros or repeats of previous entries. Before I could report
these discrepancies to my client’s boss, he called me in to discuss my fees.
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“Ridiculous,” he said. We did not part as friends. I almost regret not
taking the time to tell him that half the data he was relying on did not
exist. Tant pis. No, they are not still in business.

Not incidentally, the best cure for bad data is prevention. I strongly
urge that all your data be entered directly into a computer so they can 
be checked and verified immediately upon entry. You don’t want to be
spending time tracking down corrections long after whoever entered 19.1
can remember whether the entry was supposed to be 1.91 or 9.1 or 
even 0.191.

9.2.3. Validate the Data Collection Methods
Few studies proceed exactly according to the protocol. Physicians switch
treatments before the trial is completed. Sets of observations are missing
or incomplete. A measuring instrument may have broken down midway
through and been replaced by another, slightly different unit. Scoring
methods were modified and observers provided with differing criteria
employed. You need to determine the ways in which the protocol was
modified and the extent and impact of such modifications.

A number of preventive measures may have been used. For example, a
survey may have included redundant questions as crosschecks. You need to
determine the extent to which these preventive measures were successful.
Was blinding effective? Or did observers crack the treatment code? You
need to determine the extent of missing data and whether this was the
same for all groups in the study. You may need to ask for additional data
derived from follow-up studies of nonresponders and dropouts.

9.2.4. Formulate Hypotheses
All hypotheses must be formulated before the data are examined. It is all
too easy for the human mind to discern patterns in what is actually a
sequence of totally random events—think of the faces and animals that
always seem to form in the clouds.

As another example, suppose that while just passing the time you deal
out a five-card poker hand. It’s a full house! Immediately, someone
exclaims “What’s the probability that could happen?” If by “that” a 
full house is meant, its probability is easily computed. But the same 
exclamation might have resulted had a flush or a straight been dealt, or
even three of a kind. The probability that “an interesting hand” will be
dealt is much greater than the probability of a full house. Moreover, 
this might have been the third or even the fourth poker hand you’ve
dealt; it’s just that this one was the first to prove interesting enough to
attract attention.
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The details of translating objectives into testable hypotheses were given
in Chapters 5 and 8.

9.2.5. Choosing a Statistical Methodology
For the two-sample comparison, a t-test should be used. Remember, one-
sided hypotheses lead to one-sided tests and two-sided hypotheses to two-
sided tests. If the observations were made in pairs, the paired t-test should
be used.

Permutation methods should be used to make k-sample comparisons.
Your choice of statistic will depend upon the alternative hypothesis and
the loss function.

Permutation methods should be used to analyze contingency tables.
The bootstrap is of value in obtaining confidence limits for quantiles

and in model validation.

9.2.6. Be Aware of What You Don’t Know
Far more statistical theory exists than can be provided in the confines of
an introductory text. Entire books have been written on the topics of
survey design, sequential analysis, and survival analysis, and that’s just the
letter “s.” If you are unsure what statistical method is appropriate, don’t
hesitate to look it up on the Web or in a more advanced text.

9.2.7. Qualify Your Conclusions
Your conclusions can only be applicable to the extent that samples were
representative of populations and experiments and surveys were free from
bias. A report by G.C. Bent and S.A. Archfield is ideal in this regard.2 This
report can be viewed on-line at http://water.usgs.gov/pubs/wri/
wri024043/.

They devote multiple paragraphs to describing the methods used, the
assumptions made, the limitations on their model’s range of application,
potential sources of bias, and the method of validation. For example: “The
logistic regression equation developed is applicable for stream sites with
drainage areas between 0.02 and 7.00mi2 in the South Coastal Basin and
between 0.14 and 8.94mi2 in the remainder of Massachusetts, because
these were the smallest and largest drainage areas used in equation 
development for their respective areas.
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“The equation may not be reliable for losing reaches of streams, such as
for streams that flow off area underlain by till or bedrock onto an area
underlain by stratified-drift deposits . . .”

“The logistic regression equation may not be reliable in areas of 
Massachusetts where ground-water and surface-water drainage areas for a
stream site differ.” (Brent and Archfield provide examples of such areas.)

This report also illustrates how data quality, selection and measurement
bias can affect results. For example: “The accuracy of the logistic 
regression equation is a function of the quality of the data used in its
development. This data includes the measured perennial or intermittent
status of a stream site, the occurrence of unknown regulation above a site,
and the measured basin characteristics.

“The measured perennial or intermittent status of stream sites in 
Massachusetts is based on information in the USGS NWIS database.
Stream-flow measured as less than 0.005ft3/s is rounded down to zero, so
it is possible that several streamflow measurements reported as zero may
have had flows less than 0.005ft3/s in the stream. This measurement
would cause stream sites to be classified as intermittent when they actually
are perennial.”

It is essential that your reports be similarly detailed and qualified
whether they are to a client or to the general public in the form of a
journal article.
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THIS APPENDIX COVERS WHAT EXCEL IS, Excel document structure, how to
start and quit Excel, and components of the Excel window. An animated
HTML version of these guidelines is available online at
http://www.xlminer.com/xlprimer/Primer.htm. The present
version is provided through the courtesy of xlminer.com and
statistics.com.

WHAT IS EXCEL?
Microsoft Office Excel is the most commonly used spreadsheet software
program. Entering numbers, text, or even a formula into the Excel spread-
sheet (or a worksheet, as it is known in Excel) is quick and simple. Excel
allows easy ways to calculate, analyze, and format data.

The calculation is instantaneous and allows the user to change data and
see the result immediately in a dynamic “what if ” scenario. Excel also
helps the user to get a quick graphical representation of the worksheet
contents. Last but not least, numerous software “add-ins” available from
independent vendors allow you to supplement and enhance Excel’s exist-
ing capabilities.

EXCEL DOCUMENT STRUCTURE
An Excel document is called a workbook. Workbooks are assigned default
names such as Book1, Book2, etc. (You may and should change these
names).

Each workbook may contain multiple pages, in the form of worksheets
(and also charts). The active worksheet is displayed in the document
window of Excel.
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The default names of worksheets in a workbook are Sheet1, Sheet2 and
so on. The worksheets are easily renamed. The names are displayed in the
sheet tab at the bottom of the workbook, with the name of the active
sheet shown in bold.

Each worksheet in Excel is made up of rows and columns. The rows are
identified by numbers. The columns are identified by letters. The intersec-
tion of a row and a column defines a cell. A cell is the smallest unit to
store a data element, a formula or a function.

Each cell is identified by a Cell Address (or Cell Reference), which is
made up of a column and a row number. (Cell B4 is at the junction of
Column B and Row 4).

The cell that is currently in use is called the Current Cell or the Active
Cell. Selection of a number of adjacent cells defines a Range.

HOW TO START AND QUIT EXCEL
Microsoft Excel can be started in many different ways. The two most fre-
quently used methods are:

1. Choose Start fi Programs fi Microsoft Excel

(This notation will be used to mean: From the Windows “Start” menu,
click on “Programs” and then click on “Microsoft Excel”)

2. Double-click on Microsoft Excel shortcut if it is available on the
Desktop.

When you’re ready to quit Excel, you may Choose File fi Exit, OR
Click the “x” (Close) button at the right side of the Title Bar.

Before you quit and any time you feel apprehensive about losing the
work you’ve done so far, you need to save your worksheet.

Saving An Excel Workbook First Time
To save the workbook first time, do one of the following:

• Choose File Æ Save

• Choose File Æ Save As

• Choose the save button from the Standard Toolbar

Whatever option you choose, Excel brings up the “Save As” dialog 
box.
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The dialog box offers you a few options. You should choose

1. A file name

2. A folder, where you want to save the workbook

After you choose the file name and the folder, click on the 
button to save your workbook.

HINTS:

1. If you’re using this text as part of a class, create a folder with the name
of this class and save all your work there.

2. Use meaningful file names so it will be easy to locate the file later.

3. Save often. But use a different file name each time, for example, class-
data01 classdata02 and so forth. If you don’t change the file name, the
new file will be written on top of the old, destroying its contents.

Entering Data in Cells
This section covers entering both numeric and text data. To enter data in
a cell

1. Select the cell.

2. Type data either directly in the cell or in the Formula Bar.

3. Press Enter to accept the data and move down by a cell.
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You may also use the arrow keys on the keyboard to accept the data and
move by one cell in the direction of the arrow. The Tab key has the same
effect as the Right Arrow key.

To cancel an entry while typing (i.e., before pressing Enter), press the
Esc key. If you have already pressed Enter, use Edit Æ Undo to cancel
the entry. You may also use the Undo button on the Formatting
Toolbar.
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Entering Text Data
When we enter text data in a cell, the following rules apply

Alignment: Texts are automatically left aligned.

Font: A 10-point Arial font is used by default.

Visual Truncation: If the length of the data exceeds the cell width, the
text appears to overflow into the next cell. However,
if the next cell is not empty, the data looks
truncated.

Wrapping: Text does not wrap, unless explicitly specified.

Auto Completion: If the first few characters, entered in the current
cell, uniquely match with the text already existing in
another cell in the same column, Excel fills the
remaining characters for you. This is called the auto
completion feature of Excel. (You have the option
of ignoring this feature and typing your own data).

Entering Numeric Data
The rules for numeric data are as follows:

Alignment: By default, numeric data are right-aligned.

Precision Limit: Numbers are stored with a maximum precision
of 15 digits. If a number has more than 15 sig-
nificant digits, the extra digits are converted to
zero.

IMPORTANT

A cell may not always display all the data it contains. The display of data
depends on the cell width and the formatting used for that cell. By con-
trast, the Formula Bar always shows the entire content of the active cell.



General Format:
Integers: Excel automatically adjusts the column width to

accommodate up to 11 digits. If the data is
longer than 11 digits, Excel uses scientific (expo-
nential) notation.
For example, if the number is 1234567890123,
it will be shown as 1.23457E+12.

Numbers Containing For presentation, Excel rounds off these numbers 
Decimal point: to fit in the cell. The cell width is increased up to

11 digits, depending on the size of the integer
part of the number. For a bigger number, Excel
uses scientific notation.

Numbers Containing Excel automatically adjusts the column width to 
Comma, Dollar Sign, fit these numbers.
and Percent Sign:

Inserting and Deleting Columns and Rows
To insert a column, use one of the following methods:

Method 1
Step 1: Select a cell in the position where you want to insert a column.

(To insert a column after Column B, click on any cell in column C, say
cell C5).

Step 2: Choose Insert Æ Columns.
To insert multiple columns, select multiple cells in appropriate positions

in Step 1. Selecting cells C5 to E5 in Step 1 will allow you to insert three
columns between column B and column C.

Method 2
Step 1: Select a column by clicking on the heading of the column.
Step 2: Choose Insert Æ Columns.
You may select more than one column in Step 1 to insert multiple

columns.

To insert a row, use one of the following methods:
Method 1
Step 1: Select a cell in the position where you want to insert a row. (To

insert a row after row 7, click on any cell in row 8, say cell C8).
Step 2: Choose Insert Æ Rows.
If you select multiple cells in Step 1, more than one row will get

inserted. The positions of these rows will be determined by the cells you
choose in Step 1.
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Method 2
Step 1: Select a row by clicking on the heading of the row.
Step 2: Choose Insert Æ Rows.
To insert multiple rows, select the appropriate rows in Step 1.
Example: If you select row 8 in Step 1, Excel will insert a row after the

seventh row. However, if you select row 8 to row 10 in Step 1, Excel will
insert three rows between the seventh and the eighth rows.

Deleting Columns and Rows
To delete Columns and Rows in an Excel worksheet,

Select the Columns or Rows you want to delete.
Chose Edit Æ Delete
The row and column headings also act as control buttons and can be

used to change the sizes of rows and columns. The options available are:

• Changing Column and Row Sizes Manually:

Use your mouse to drag the right boundary of a column or the bottom
boundary of a row until you get the desired size.

• Adjust the Sizes Automatically (AutoFit):

Double-click the right boundary of a column or the bottom boundary
of a row. The column/row will resize itself to accommodate the largest
entry.

Note: If you select multiple rows/columns and use the boundary of
one of them for double-clicking, the sizes of the selected rows/columns
will be automatically adjusted. If you click on the Select All button at the
top left corner of the worksheet (see Animation), and then double-click
on a row/column boundary the AutoFit option will adjust the sizes of all
the rows/columns in the worksheet.
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Absolute value, 140
Average(), 6, 74
BinomDist(), 49, 123
ChartWizard, 21
Combin(), 46
Correl(), 102
Cos(), 159
Entering data, 224
Formula Bar, 5
If(96)

Median(), 5, 9 
Menu Bar, 8
Normsinv(), 17, 126
Percentile(), 17
Rand(), 118
Rank(), 146
ScatterPlot, 14
Sort, 8, 118
Workbook, 221

Index to Excel Functions 
and Excel Add-Ins





Accuracy, 26, 89
Add-Ins

Box Sampler, 5, 70, 82, 98, 140
Ctree, 186
DataDeskXL, 5, 10, 22, 92, 156
Resampling Stats, 28, 96, 103,

140–3
Solver, 123
Xlminer, 192
XLStat, 7, 25, 162, 175

Additive model, 159
Alternative hypothesis, 141, 198
ARIMA, 184
Assumptions, see Tests
Audit, 116, 173

Baseline, 205
Bias, 31, 209
Binomial

distribution, 48, 51
parameter, 52
random variable, 73
trial, 43, 94

Blinding, 106
Blocking, 12, 117, 145, 174, 197
bootstrap, 27, 81, 127, 185, 205, 218

parametric, 90
percentile, 27, 89

Box and whiskers plot, 7
Box plot, 10
Boyle’s Law, 1, 155

CART, 186
Categorical variable, 20, 148, 153
Cauchy distribution, 71
Chi-square statistic, 152
Classification, 158, 186
Coefficient, 155
Conditional probability, 53
Confidence, 55
Confidence interval, 29, 82, 86, 96,

206
Contingency table, 59, 153
Controls, 46
Correlation, 84, 101
Cross-validation, 185
Cumulative distribution, 16, 19, 64

Data collection, 7, 31, 197, 217
Data

categorical, 148
continuous, 71, 75
discrete, 20, 66, 75
metric, 20
ordinal, 20
types, 20

Data mining, 190
Dispersion, see Variance
Dose response, 141

Empirical distribution, 51, 66, 128
Equally likely events, 39
Estimation, 81, 89
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Examples
agriculture, 138, 1444
astrophysics, 42, 57, 110
biology, 69, 77, 84, 100–4, 114–6,

194–6
business, 55, 81, 100, 113, 134
clinical trials, 86, 98, 106–08, 128,

151, 208
economic, 110, 117
education, 13, 136
epidemiology, 45, 57, 93, 101, 117,

129, 135, 149, 157, 167
geologic, 217
law, 47, 86, 111, 118
political science, 45, 53, 81, 110, 122
psychology, 109
sociology, 81, 109

Exchangeable observations, 99, 146
Expected value, 50, 67, 71, 182
Experimental unit, 114, 197
Exponential distribution, 71

Factorial, 45
Fisher’s exact test, 150

Goodness of fit, 172
Graphs, 199, 202, 203
Group sequential design, 130
Growth processes, 202

Histogram, 24, 201
HIV, 115
Hypothesis

Alternative, 78, 86, 141
formulation, 109, 114, 218
null, 77
testing, 76, 86, 207

Identically distributed, 99, 171
Independence, 57,74, 109, 119
Independent events, 58
Independent variables, 75
Interquartile range, 35
Interval estimate, see Confidence

interval

Lift ratio, 192
Likert scale, 166

Marginals, 149
Martingale, 40
Matched pairs, 113
Mathematical Expectation, see

Expected value.
Maximum, 6
Mean, arithmetic, 23
Mean, geometric, 202
Median, 4, 23, 48, 203
Meta-analysis, 134
Minimum, 5,8
Missing data, 2, 122, 205, 209
Modes, 24, 48, 208
Model, 155
Monte Carlo, 95, 102
Multinomial, 53
Multisample comparison, 138
Mutually exclusive events, 41, 44

Nonrespondents, 199, 208
Nonsymmetrical (see skewed)
Normal distribution, 72, 125, 201
Null hypothesis, 77

Objectives, 196
Outcomes vs. events, 41

Parameter, 200
Pearson correlation, 102
Percentages, 137
Percentile, 15, 17, 29, 182
Permutation, 45
Permutation test, 95, 97, 139, 143
Pie chart, 21
Pitman correlation, 102
Placebo effect, 106
Poisson distribution, 68, 93
Poll, see survey
Pollution, 167
Population, 111, 200
Power, 100, 122, 125, 141, 196, 

198
Precision, 26, 200
Prediction, 156, 172
Predictor, 155
Prevention, 173
Probability laws, 40, 44
p-value, 98, 206
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Qualitative vs quantitative, 166
Quality control, 72, 93, 141
Quantile (see percentile)

Range, 6
Ranks, 146–7
Rearrangement, 46, 78, 139
Regression, 159

coefficients, 161, 170
Deming (EIV), 168
LAD, 168
linear, 160
multivariable, 175
nonlinear, 161
OLS, 162
quantile, 182

Regression tree (see CART)
Rejection region, 151
Reportable elements, 195
Resample, 183
Residual, 163, 173
Robust, 99

Sample
random, 32, 76, 109, 116, 118
representative, 32, 109, 116, 214
size, 27, 120, 127, 191
stratified, 147

Sampling, 197
adaptive, 133
clusters, 119, 198
error, 172
sequential, 121, 129
unit, 33

Scatter plot, 12, 202
Selectivity, 101
Sensitivity, 101
Shift alternative,, 64

Significance
exact level, 99
level, 86, 98–9, 122, 206
practical vs statistical, 144

Simulation, 82, 128
Skewed, 26
Slope, 163
Standard deviation, 35
Standard error, 97, 204
Statistic, 26, 73
Stein’s two-stage procedure, 129
Strata (see blocking)
Strip chart, 5
Student’s t, 91, 97, 100, 218
Support, 55, 192
Surrogate variable, 115
Survey, 3, 31, 45, 108, 116, 119
Symmetric distribution, 68

Test
assumptions, 98, 171
multiple samples, 138
one- vs. two-sided, 200
one sample, 89
parametric, 97
resampling, see Permutation test

Treatment allocation, 117
Type I, II errors, 80, 98, 100, 124,

130

Uniform distribution, 204

Validation, 158, 183, 198
Variance, 34, 65, 68, 76, 99, 138, 145,

195
Variation, 2–3, 34–35, 169, 197
Venn diagram, 41, 64
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